| 研究生: |
周建良 Chou, Chien-Liang |
|---|---|
| 論文名稱: |
量子系統控制理論之研究 Study on the Control Theory of Quantum Systems |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 糾纏回授 、投影算符 、量子系統 |
| 外文關鍵詞: | entangled feedback, projection operator, quantum system |
| 相關次數: | 點閱:167 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來控制驅動場技術的進展,提升了量子領域中系統控制的可能性,比如說分子動力學或是化學反應的控制等等。其中Rabitz 和Schirmer 提出的量子最佳化控制理論,乃針對正定可觀測物理量算符的期望值之最佳化控制,提出一種稱之為糾纏回授的演算法,並以此方法設計其外在控制場,來達成所要控制的目標。
另一方面,由於多體量子系統的控制分析往往是複雜的,一般而言,通常以簡化的型式來描述量子系統及其控制的過程,在本篇論文中,我們試著使用投影算符之方法來研究多維度的量子系統之控制行為,利用P和Q兩個投影算符,將量子系統的狀態分為主導量子狀態之行為與誤差修正項兩個部份,並結合上述Schirmer 的最佳化控制和演算法,降低誤差修正項對系統的影響,最後針對一個氟化氫分子,探討某一特定能階躍遷轉換為最大化的研究。
Recent advances in driven system have opened up new possibilities for control of phenomena in the quantum regime, such as molecular dynamics or chemical reaction dynamics. Rabitz and Schirmer presented an entangled feedback algorithm for quantum optimal control of the physical expectation value of a positive-definite observable operator.They designed to find the control field by this method and show that
achieving the control objective.
On the other hand, the analysis of control of the many-body quantum system is complex. For the reason it is described to have a reduced formulation of the control process generally. In this thesis we investigate the processes of multi-dimension of quantum control system by using projection operator method. Then we expect that the projection operator P onto the subspace which composed of strongly coupled states dominates the system dynamics, and let Q onto the remaining states which regard as the correction from the influence of weakly coupled states. We hope to decay or eliminate the correction by the above
algorithm method. Finally, the way is then applied to the problem of maximizing the population of objected level for a HF (hydrogen fluoride) molecule with Morse oscillator potential model.
[1] W. S. Warren, H. Rabitz and M. A. Dahleh, Coherent Control of Quantum Dynamics: The Dream is Alive, Science 259(12), 1581, 1993.
[2] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum-Mechanical Processes and Systems, Kluwer Academic Pub., Dordrecht, Netherlands, 1990.
[3] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum Systems(I), Auto. & Remote Control 40(4), 485, 1979.
[4] A. G. Butkovskiy and Yu. I. Samoilenko, Control of Quantum Systems(II), Auto. & Remote Control 40(5), 629, 1979.
[5] A. G. Butkovskiy and Yu. I. Samoilenko, Controllability of Quantum Objects, Dokl. Akad. Nauk SSSR 250(1), 51, 1980. [Sov. Phys. Dokl. 25,22, 1980.]
[6] V. Jurdjevic and H. J. Sussmann, Control Systems on Lie Groups, J. Differ. Equ. 12, 313, 1972.
[7] R. W. Brockett, Lie Theory and Control Systems Defined on Spheres,SIAM J. Appl. Math. 25(2), 213, 1973.
[8] R. W. Brockett, Lie Algebras and Lie Groups in Control Theory, Geometrical Methods in Systems Theory, pp43, Reidel Pub., Dordrecht, Netherlands, 1973.
[9] A. G. Butkovskiy, Some New Results in Distributed Parameter System Control: An Overview, Large Scale Systems 6, 187, 1984.
[10] 詹政憲, 量子控制系統的可控制性研究, 中原大學碩士論文, 中壢, 1992.
[11] 陳弘暻, 量子系統的可控制性研究( 二), 中原大學碩士論文, 中壢, 1993.
[12] 謝道明, 量子系統控制的理論研究, 中原大學碩士論文, 中壢, 2000.
[13] T. J. Tarn, G. M. Huang and J. W. Clark, Modelling of Quantum Mechanical Control Systems, Mathematical Modelling 1, 109, 1980.
[14] G. M. Huang, T. J. Tarn and J. W. Clark, On the Controllability of Quantum-Mechanical Systems, J. Math. Phys. 24(11), 2608, 1983.
[15] C. K. Ong, G. M. Huang, T. J. Tarn and J. W. Clark, Invertibility of Quantum-Mechanical Control Systems, Math. Syst. Theory 17(4), 335,
1984.
[16] J. W. Clark, C. K. Ong, T. J. Tarn and G. M. Huang, Quantum Nondemolition Filters, Math. Syst. Theory 18(1), 33, 1985.
[17] M. Shapiro and P. Brumer, Laser Control of Product Quantum State Populations in Unimolecular Reactions, J. Chem. Phys. 84(7), 4103, 1986.
[18] M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes, John Wiley & Sons Publ., Hoboken, New Jersey, 2003.
[19] C. K. Chan, P. Brumer and M. Shapiro, Coherent Radiative Control of IBr Photodissociation via Simultaneous ( 3 1 , ω ω ) Excitation, J. Chem.Phys. 94(4), 2688, 1991.
[20] A. P. Peirce, M. A. Dahleh and H. Rabitz, Optimal Control of Quantum - Mechanical Systems: Existence, Numerical Approximation, and
Application, Phys. Rev. A 37(12), 4950, 1988.
[21] D. J. Tannor, R. Kosloff and S. A. Rice, Coherent Pulse Sequence Induced Control of Selectively of Reactions : Exact Quantum
Mechanical Calculations, J. Chem. Phys. 85(10), 5805, 1986.
[22] S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics, John Wiley & Sons Publ., New York, 2000.
[23] A. C. Doherty, S. Habib, H. Mabuchi, et al.,Robust Control in the Quantum Domain, Proceeding of the 39th IEEE Conference on
Decision and Control, Piscataway, New Jersey, 949, 2000.
[24] A. Claudio, Controllability of Quantum Mechanical Systems by Root Space Decomposition of su(N), J. Math. Phys. 43(5), 2051, 2002.
[25] U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, Population Transfer between Molecular Vibrational Levels by Stimulated Raman
Scattering with Partially Overlapping Laserfields. A New Concept and Experimental Results, J. Chem. Phys. 92(9), 5363, 1990.
[26] G. W. Coulston and K. Bergmann, Population Transfer by Stimulated Raman Scattering with Delayed Pulses: Analytical Results for
Multilevel Systems, J. Chem. Phys. 96(5), 3467, 1992.
[27] B. Glushko and B. Kryzhanovsky, Radiative and Collisional Damping Effects on Efficient Population Transfer in a Three-Level System
Driven by Two Delayed Laser Pulses, Phys. Rev. A 46(5), 2823, 1992.
[28] M. Morillo, and R. I. Cukier, Control of Proton-Transfer Reactions with External Fields, J. Chem. Phys. 98(6), 4548, 1993.
[29] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green's Function Methods in Equilibrium and Nonequilibrium problems, W. A.
Benjamin Pub., New York, 1962.
[30] D. Y. Petrina, Mathematical Foundations of Quantum Statistical Mechanics, Kluwer Academic Pub., 1995.
[31] R. Shankar, Principles of Quantum Mechanics, Plenum Press, New York, 1980.
[32] J. von Neumann, The Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1996.
[33] Y. Ohtsuki and Y. Fujimura, Bath-Induced Vibronic Coherence Transfer Effects on Femtosecond Time-Resolved Resonant Light Scattering Spectra from Molecules, J. Chem. Phys. 91(7), 3903, 1989.
[34] J. Seke, A. V. Soldatov and N. N. Bogolubov Jr., Novel Technique for Quantum-Mechanical Eigenstate and Eigenvalue Calculatiions Based
on Seke's Self-Consistent Projection-Operator Method, Mod. Phys. Lett. B 11(6), 245, 1997.
[35] F. Shibata, Unified Projection Operator Formalism in Nonequilibrium Statistical Mechanics, Chikako Uchiyama , Phys. Rev. E 60(3), 2636, 1999.
[36] S. G. Schirmer, Theory of Control of Quantum Systems, UMI, Ann Arbor, MI, 2000.
[37] W. Zhu and H. Rabitz, A Rapid Monotonically Convergent Iteration Algorithm for Quantum Optimal Control over the Expectation Value of
a Positive Definite Operator, J. Chem. Phys. 109(2), 385, 1998.
[38] A. E. Bryson, Jr and Yu Chi Ho, Applied Optimal Control: Optimization Estimation and Control, Hemisphere Pub., Washington, 1975.
[39] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley Pub., New York, 1967.
[40] A. P. Sage and C. C. White III, Optimum Systems Control, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.
[41] G. Leitmann, The Calculus of Variations and Optimal Control, Plenum Press Pub., New York, 1981.
[42] 何魯著, 變分法, 台灣商務出版, 台北市, 1977.
[43] S. G. Schirmer, M. D. Girardeau, J. V. Leahy, Efficient Algorithm for Optimal Control of Mixed-State Quantum Systems, Phys. Rev. A 61(1),
012101, 2000.
[44] M. Suzuki, Fractal Decomposition of Exponential Operators with Applications to Many-Body Theories and Monte Carlo Simulations,
Phys. Lett. A 146(6), 319, 1990.
[45] C. Uchiyama and F. Shibata, A Systematic Projection Operator Formalism in Nonequilibrium Statistical Mechanics, Journal of the
Physical Society of Japan 65(4), 887, 1996.
[46] H. P. Breuer and B. Kappler, The Time-Convolutionless Projection Operator Technique in the Quantum Theory of Dissipation and
Decoherence, Annals of Physics 291, 36, 2001.
[47] J. Seke, A. V. Soldatov and N. N. Bogolubov Jr, The Seke Self-Consistent Projection-Operator Approach for the Calculation of
Quantum-Mechanical Eigenvalues and Eigenstates, Physica A 246, 221, 1997.
[48] A. Muriel and M. Dresden, Projection Techniques in non-Equilibrium Statistical Mechanics, Physica 43, 424, 1969.
[49] J. Seke, Self-Consistent Projection-Operator Method for Describing the non-Markovian Time-Evolution of Subsystems, J. Phys. A 23, L61, 1990.
[50] M. D. Girardeau, S. G. Schirmer, J. V. Leahy and R. M. Koch, Kinematical Bounds on Optimization of Observables for Quantum
Systems, Phys. Rev. A 58(4), 2684, 1998.
[51] S. Chelkowski, A. D. Bandrauk and P. B. Corkum, Efficient Molecular Dissociation by a Chirped Ultrashort Infrared Laser Pulse, Phys. Rev. Lett. 65(19), 2355, 1990.
[52] H Fu, S. G. Schirmer and A. I. Solomon, Complete Controllability of Finite-Level Quantum Systems, J. Phys. A: Math. Gen. 34, 1679, 2001.
[53] S. G. Schirmer, H. Fu and A. I. Solomon, Complete Controllability of Quantum Systems, Phys. Rev. A 63(6), 063410, 2001.