簡易檢索 / 詳目顯示

研究生: 曾姿翊
Tseng, Tzu-Yi
論文名稱: 晶圓片缺陷檢測的遮蔽效應之探討
The Masked Effect of Defect Detection from Wafer Bin Maps
指導教授: 鄭順林
Jeng, Shuen-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 70
中文關鍵詞: 遮蔽效應序列測試晶圓圖HNF 空間檢定最大信息係數距離相關係數Radon 轉換
外文關鍵詞: Masked Effect, Sequential Testing, Wafer Bin Map, HNF Test, MIC, DCOR, Radon Transformation
相關次數: 點閱:134下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓圖是半導體產業中偵測製程異常的重要參考依據。在晶粒完成製造後,電信檢測的結果會因不同的bin code 形成特殊晶圓圖像,協助工程師判斷發生錯誤的製程步驟,進而分析製造過程中的錯誤原因。然而在找尋錯誤原因時,找尋結果會受晶圓片上晶粒功能的量測機制所影響。該機制是在晶粒上發現一種功能錯誤時,便會停止其他功能的量測,故後量測bin code 的晶圓圖像可能並不完整,會受到先量測bin code 所遮蔽,而無法判定被遮蔽的後量測bin code 的原始圖像。
    本論文的目的即是利用量測順序的資訊去探討bin code 是否會有被遮蔽問題,先透過空間檢定、最大信息係數、距離相關係數找尋可能存在被遮蔽問題的target bin code,考慮target bin code 和量測順序在target bin code 前的所有bin code 的遮蔽問題,而後將圖像分為可能被遮蔽以及可能佐證被遮蔽的圖像,再利用Radon 轉換等方法去判定此target bin code 是否存在遮蔽效應。
    本論文提出的晶圓片遮蔽判定流程以及演算法,可以推測bin code 是否存在被遮蔽問題,以便讓工程師查找什麼原因造成晶圓片上缺陷特徵有特殊的缺陷圖形。本研究的真實分析資料都經過雜訊處理,但不影響尋找target bin code 的被遮蔽問題。

    The wafer bin map (WBM) is a useful tool for detecting abnormal manufacturing processes. After the manufacture of dies in a wafer is completed, the results of the circuit probing test (CP test) may form a special WBM from a particular bin code which may help engineers to determine the defect process steps and to find the root cause of the defects in the manufacturing process. However, the mechanism of CP test is a sequential testing process. When a certain type of defect is found, the process will stop the rest of the tests and mark the die with the corresponding bin code of the defect. In other words, the result of the rest of tests will be unknown and the bin code recorded afterward may be masked by the previous defected ones. Therefore, engineers are unable to determine the overall WBM of bin codes that may be masked.
    The purpose of this thesis is using the information of sequential testing to determine a bin code whether there exists a masking problem. This thesis proposes a framework integrating the method of a spatial test, Maximal Information Coefficient (MIC), and Distance Correlation
    (DCOR). Moreover, we consider the masked problem with a specific bin code and all the other previously tested bin codes, and then separate the wafers with target bin code into two parts, possibly masked wafers maps and possible support for masked wafers maps. We develop an algorithm by using the Radon transform to determine the masked wafers. Some noise was added to each wafer to maintain the confidentiality of the real data.

    摘要i Abstract ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1. Background and Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1. Process of Semiconductor Manufacturing . . . . . . . . . . . . . . 2 1.2.2. Masking in Wafer Bin Maps . . . . . . . . . . . . . . . . . . . . . 2 1.2.3. Similarity of Wafer Bin Maps . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2. Methodology and Procedure 6 2.1. HNF Test, MIC and DCOR . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1. The HNF Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2. The Maximum Information Coefficient . . . . . . . . . . . . . . . 9 2.1.3. The Distance Correlation Coefficient . . . . . . . . . . . . . . . . . 10 2.2. Radon Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3. New Procedure for Mask Detection . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1. The flow Charts for the Procedure . . . . . . . . . . . . . . . . . . 20 2.3.2. Step 1. Selection of Target Bin Code . . . . . . . . . . . . . . . . . 25 2.3.3. Step 2. Separation of Possibly Masked and Possible Support WBMs 25 2.3.4. Step 3. Evidence Calculation of Masked Target Bin Code . . . . . . 27 2.3.5. Algorithm of the Procedure . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 3. Application of the Developed Procedure 31 3.1. Mask Detection for a Single Bin Code . . . . . . . . . . . . . . . . . . . . 31 3.2. Selection of Target Bin Code . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3. Separation of Possibly Masked and Possible Support WBMs . . . . . . . . 35 3.3.1. PM-1 & PSM-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2. PM-2 & PSM-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3. PM-3 & PSM-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4. Evidence Calculation of Masked Target Bin Code . . . . . . . . . . . . . . 48 3.4.1. Covering Movements . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.2. The Condition of Similarity Comparison (SC) . . . . . . . . . . . . 51 3.4.3. The Evidence of the Mask Effect . . . . . . . . . . . . . . . . . . . 52 3.5. Sensibility Analysis of Parameter Setting . . . . . . . . . . . . . . . . . . . 58 3.5.1. The _1 Value of the Parameter for HNF Test . . . . . . . . . . . . . 58 3.5.2. The Value of the Threshold for HNF Test, MIC and DCOR . . . . . 62 3.5.3. The Standard of Similarity Comparison . . . . . . . . . . . . . . . 63 Chapter 4. Conclusion 67 4.1. Major Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References 69

    Chien, C.-F., Hsu, S.-C., and Chen, Y.-J. (2013). A system for online detection and classification
    of wafer bin map defect patterns for manufacturing intelligence. International
    Journal of Production Research, 51(8):2324–2338.
    Deans, S. R. (2007). The Radon transform and some of its applications. Courier Corporation.
    Fritz, J., U-Thainual, P., Ungi, T., Flammang, A. J., Cho, N. B., Fichtinger, G., Iordachita,
    I. I., and Carrino, J. A. (2012). Augmented reality visualization with image overlay for
    mri-guided intervention: accuracy for lumbar spinal procedures with a 1.5-t mri system.
    American Journal of Roentgenology, 198(3):266–273.
    Hansen, M. H., Nair, V. N., and Friedman, D. J. (1997). Monitoring wafer map data from
    integrated circuit fabrication processes for spatially clustered defects. Technometrics,
    39(3):241–253.
    Hsu, M.-J. (2016). The order effect of wafer defect detection in the clustering of wafer bin
    maps. Master Thesis of the National Cheng Kung University.
    Hsu, S.-C. and Chien, C.-F. (2007). Hybrid data mining approach for pattern extraction from
    wafer bin map to improve yield in semiconductor manufacturing. International Journal of
    Production Economics, 107(1):88–103.
    Kaempf, U. (1995). The binomial test: A simple tool to identify process problems. IEEE
    Transactions on semiconductor manufacturing, 8(2):160–166.
    Kryscio, R. J., Saunders, R., and Funk, G. M. (1980). Normal approximations for binary
    lattice systems. Journal of Applied Probability, 17(3):674–685.
    Liao, C.-S., Hsieh, T.-J., Huang, Y.-S., and Chien, C.-F. (2014). Similarity searching for defective
    wafer bin maps in semiconductor manufacturing. IEEE Transactions on Automation
    Science and Engineering, 11(3):953–960.
    Liu, A., Lin, W., and Narwaria, M. (2012). Image quality assessment based on gradient
    similarity. IEEE Transactions on Image Processing, 21(4):1500–1512.
    Martínez-Gómez, E., Richards, M. T., and Richards, D. S. P. (2014). Distance correlation
    methods for discovering associations in large astrophysical databases. The Astrophysical
    Journal, 781(1):39.
    May, G. S. and Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and
    process control. John Wiley & Sons.
    Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J.,
    Lander, E. S., Mitzenmacher, M., and Sabeti, P. C. (2011). Detecting novel associations in
    large data sets. Science, 334(6062):1518–1524.
    Simard, P., LeCun, Y., and Denker, J. S. (1993). Efficient pattern recognition using a new
    transformation distance. Advances in neural information processing systems, pages 50–50.
    Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007). Measuring and testing dependence
    by correlation of distances. The Annals of Statistics, 35(6):2769–2794.
    Van Silfhout, R., Van Driel, W., Li, Y., Zhang, G., and Ernst, L. (2002). Prediction of back-end
    process-induced wafer warpage and experimental verification. In Electronic Components
    and Technology Conference, 2002. Proceedings. 52nd, pages 1182–1187. IEEE.
    Wang, C.-H. (2008). Recognition of semiconductor defect patterns using spatial filtering and
    spectral clustering. Expert Systems with Applications, 34(3):1914–1923.
    Werman, M. and Weinshall, D. (1995). Similarity and affine invariant distances between 2d
    point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):810–
    814.
    Wu, M.-J., Jang, J.-S. R., and Chen, J.-L. (2015). Wafer map failure pattern recognition and
    similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manufacturing,
    28(1):1–12.

    無法下載圖示 校內:2022-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE