簡易檢索 / 詳目顯示

研究生: 郭彥伶
Kuo, Yan-Ling
論文名稱: 促進皮膚再生的新型甲殼素敷料之研發
Development of new chitosan wound dressing for skin regeneration
指導教授: 吳佳慶
Wu, Chia-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 73
中文關鍵詞: 甲殼素敷料硫酸化甲殼素傷口癒合
外文關鍵詞: Chitosan wound dressing, sulfated chitosan, wound healing
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract II Table of Contents VII Contents of Figures XI Contents of Tables XIIII Chapter 1. Research Background 1 1-1 Wound healing 1 1-2 Application of wound dressing 2 1-2-1 Characteristics of an ideal wound dressing 2 1-2-2 Common types of dressing 3 1-3 Chitosan 4 1-3-1 Chitosan wound dressing 4 1-3-2 Advantages of Chitosan 4 1-3-3 Modifications of Chitosan 5 1-4 Current problems and limitations of wound dressing 7 1-4-1 Problems in Chitosan wound dressing 7 1-5 Motivation of current study 8 Chapter 2. Materials and Methods 9 2-1 Cell culture 9 2-2 Cell proliferation assay 9 2-3 Animal study 10 2-4 Adhesion test 10 2-5 Physical modification 11 2-6 Chemical modification 11 2-7 Histology pathological staining 12 2-8 Blood-clotting assay 16 2-9 Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis 17 Chapter 3. Results 18 3-1 The physical modification 18 3-1-1 The physically modified materials effectively decreased the adhesion between the dressings and the wound bed 18 3-1-2 The physically modified materials (CS+G10) promoted the cutaneous wound healing 20 3-1-3 The treatment of the physically modified CS+G10 group increased the wound construction and well collagen deposition in H&E and Masson’s Trichrome staining 20 3-1-4 The CS+G10 group promoted the angiogenesis that was observed by IHC staining. 22 3-1-5 The physically modified dressings were tested by blood-clotting methods. 24 3-1-6 The physically modified materials promoted the attachment ability and non-toxicity. 25 3-2 The chemical modification 26 3-2-1 Characterization of 6-O-Sulfated Chitosan (SCS) 26 3-2-2 6-O-Sulfated Chitosan promoted cell proliferation.. 26 3-2-3 The mixture of Chitosan and sulfated Chitosan had a lower adhesion of the dressing and the wound bed than CS group at day 5. 28 3-2-4 The mixture of Chitosan and sulfated Chitosan increased the wound closure and promoted wound healing in vivo study. 29 3-2-5 The mixture of Chitosan and sulfated Chitosan accelerated the wound closure and enhanced the collagen deposition. 30 3-2-6 The mixture of Chitosan and sulfated Chitosan promoted angiogenesis in the wound tissue. 31 3-2-7 The coagulation activity of chemically modified Chitosan showed as great as Chitosan 33 Chapter 4. Discussion 35 References 45 Figures 53 Tables 70   Contents of Figures Figure 1. The full-thickness skin excision model and force test device. 53 Figure 2. Physically modified material reduced the adhesion value and promoted the wound closure. 55 Figure 3. The physically modified (CS+G10) group accelerated the wound closure and better collagen deposition. 56 Figure 4. The physically modified dressings could increase the blood vessel formation on the wound bed after 14 days of treatment that confirmed by RECA-1 immunohistochemical (IHC) staining 58 Figure 5. Blood clotting test for the physically modified wound dressings. 59 Figure 6. The proliferation and cell viability of the HS68 cell line on physically modified material were evaluated by MTT assay. 60 Figure 7. Sulfated Chitosan (SCS) synthesis procedure 54 Figure 8. FTIR-Spectra of sulfated Chitosan (SCS) and original high molecular weight Chitosan powder (CS). 61 Figure 9. The proliferation and cell viability of HS68 cell line on chemically modified material were evaluated by MTT assay. 62 Figure 10. The chemically modified dressing didn’t reduce the adhesion. 63 Figure 11. The mixture of Chitosan and sulfated Chitosan accelerated the wound closure and had better collagen deposition. 64 Figure 12. The chemically modified dressings could increase the blood vessel formation on the wound bed after 14 days treatment that confirmed by RECA-1 immunohistochemical (IHC) staining. 66 Figure 13. Blood clotting test for the chemically modified wound dressings 67 Figure 14. Summary for physical modification 68 Figure 15. Summary for chemical modification 69 Subfigure 1. Quantification of collagen ratios by Masson trichrome staining of physically modified groups. 70 Subfigure 2. Quantification of collagen ratios by Masson trichrome staining of chemically modified groups. 71 Subfigure 3. The blood clotting test results indicated that the physical modification (CS+G4) group enhanced coagulation after 30 minutes. 72 Contents of Tables Table 1. Physically modified materials 73 Table 2. Chemically modified materials 73

    [1] I. Negut, G. Dorcioman, V. Grumezescu, Scaffolds for Wound Healing Applications, Polymers (Basel) 12(9) (2020).
    [2] M. Xue, C.J. Jackson, Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring, Adv Wound Care (New Rochelle) 4(3) (2015) 119-136.
    [3] A. Sood, M.S. Granick, N.L. Tomaselli, Wound Dressings and Comparative Effectiveness Data, Adv Wound Care (New Rochelle) 3(8) (2014) 511-529.
    [4] D. Okan, K. Woo, E.A. Ayello, G. Sibbald, The role of moisture balance in wound healing, Adv. Skin Wound Care 20(1) (2007) 39-53; quiz 53-5.
    [5] S. Dhivya, V.V. Padma, E. Santhini, Wound dressings - a review, Biomedicine (Taipei) 5(4) (2015) 22.
    [6] J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci. 97(8) (2008) 2892-923.
    [7] Z. Obagi, G. Damiani, A. Grada, V. Falanga, Principles of Wound Dressings: A Review, Surg. Technol. Int. 35 (2019) 50-57.
    [8] M. Collier, H. Hollinworth, Pain and tissue trauma during dressing change, Nurs. Stand. 14(40) (2000) 71-3.
    [9] E.A. Kamoun, E.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J Adv Res 8(3) (2017) 217-233.
    [10] M. Madaghiele, C. Demitri, A. Sannino, L. Ambrosio, Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates, Burns Trauma 2(4) (2014) 153-61.
    [11] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nat Rev Mater 1(12) (2016).
    [12] S. Trombino, R. Cassano, Special Issue on Designing Hydrogels for Controlled Drug Delivery: Guest Editors' Introduction, Pharmaceutics 12(1) (2020).
    [13] B. Lanel, D. Barthes-Biesel, C. Regnier, T. Chauve, Swelling of hydrocolloid dressings, Biorheology 34(2) (1997) 139-53.
    [14] F.V.D. A. Van Huis, Chapter 21 - Edible Insects: A Neglected and Promising Food Source, Sustainable Protein Sources, 2017.
    [15] M. Prabaharan, Review paper: chitosan derivatives as promising materials for controlled drug delivery, J. Biomater. Appl. 23(1) (2008) 5-36.
    [16] T. Dai, M. Tanaka, Y.Y. Huang, M.R. Hamblin, Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects, Expert Rev. Anti Infect. Ther. 9(7) (2011) 857-79.
    [17] M.A. Matica, F.L. Aachmann, A. Tondervik, H. Sletta, V. Ostafe, Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action, Int. J. Mol. Sci. 20(23) (2019).
    [18] J. Radwan-Praglowska, M. Piatkowski, V. Deineka, L. Janus, V. Korniienko, E. Husak, V. Holubnycha, I. Liubchak, V. Zhurba, A. Sierakowska, M. Pogorielov, D. Bogdal, Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties-Synthesis and Characterization, Molecules 24(14) (2019).
    [19] B. Sultankulov, D. Berillo, K. Sultankulova, T. Tokay, A. Saparov, Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine, Biomolecules 9(9) (2019).
    [20] H.A.A.-L. Faruq Mohammad, and Hafiz N. Al-Haque, Chitosan-mediated fabrication of metal nanocomposites for enhanced biomedical applications, Advanced Materials Letters, 2017.
    [21] J.M. de Lima, R.R. Sarmento, J.R. de Souza, F.A. Brayner, A.P. Feitosa, R. Padilha, L.C. Alves, I.J. Porto, R.F. Batista, J.E. de Oliveira, E.S. de Medeiros, P.R. Bonan, L.R. Castellano, Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes, Biomed Res Int 2015 (2015) 247965.
    [22] Q. Fang, Z. Yao, L. Feng, T. Liu, S. Wei, P. Xu, R. Guo, B. Cheng, X. Wang, Antibiotic-loaded chitosan-gelatin scaffolds for infected seawater immersion wound healing, Int. J. Biol. Macromol. 159 (2020) 1140-1155.
    [23] R. Jayakumar, N. Nwe, S. Tokura, H. Tamura, Sulfated chitin and chitosan as novel biomaterials, Int. J. Biol. Macromol. 40(3) (2007) 175-81.
    [24] C. Ardean, C.M. Davidescu, N.S. Nemes, A. Negrea, M. Ciopec, N. Duteanu, P. Negrea, D. Duda-Seiman, V. Musta, Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization, Int. J. Mol. Sci. 22(14) (2021).
    [25] X. Wang, J. Ma, Y. Wang, B. He, Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements, Biomaterials 23(21) (2002) 4167-76.
    [26] X. Wang, J. Guan, X. Zhuang, Z. Li, S. Huang, J. Yang, C. Liu, F. Li, F. Tian, J. Wu, Z. Shu, Exploration of Blood Coagulation of N-Alkyl Chitosan Nanofiber Membrane in Vitro, Biomacromolecules 19(3) (2018) 731-739.
    [27] D. Wang, N. Zhang, G. Meng, J. He, F. Wu, The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing, Colloids Surf. B. Biointerfaces 194 (2020) 111191.
    [28] Y. Yang, R. Xing, S. Liu, Y. Qin, K. Li, H. Yu, P. Li, Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine, Carbohydr. Polym. 229 (2020) 115423.
    [29] K.R. Holme, A.S. Perlin, Chitosan N-sulfate. A water-soluble polyelectrolyte, Carbohydr. Res. 302(1-2) (1997) 7-12.
    [30] P. Seedevi, M. Moovendhan, S. Vairamani, A. Shanmugam, Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi, Int. J. Biol. Macromol. 99 (2017) 519-529.
    [31] R. Xing, H. Yu, S. Liu, W. Zhang, Q. Zhang, Z. Li, P. Li, Antioxidant activity of differently regioselective chitosan sulfates in vitro, Bioorg Med Chem 13(4) (2005) 1387-92.
    [32] N.M. Sarbon, S. Sandanamsamy, S.F. Kamaruzaman, F. Ahmad, Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties, J. Food Sci. Technol. 52(7) (2015) 4266-75.
    [33] P. Ramasamy, N. Subhapradha, T. Thinesh, J. Selvin, K.M. Selvan, V. Shanmugam, A. Shanmugam, Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891), Int. J. Biol. Macromol. 99 (2017) 682-691.
    [34] Q. Tian, X.H. Wang, W. Wang, C.N. Zhang, P. Wang, Z. Yuan, Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid, Nanomedicine 8(6) (2012) 870-9.
    [35] T.J. Madera-Santana, C.H. Herrera-Méndez, J.R. Rodríguez-Núñez, An overview of the chemical modifications of chitosan and their advantages, Green Materials 6(4) (2018) 131-142.
    [36] K. Ding, Y. Wang, H. Wang, L. Yuan, M. Tan, X. Shi, Z. Lyu, Y. Liu, H. Chen, 6-O-sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells, ACS Appl Mater Interfaces 6(22) (2014) 20043-50.
    [37] H. Zhou, J. Qian, J. Wang, W. Yao, C. Liu, J. Chen, X. Cao, Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo, Biomaterials 30(9) (2009) 1715-24.
    [38] G. Han, X. Xia, Z. Pan, Y. Lin, L. Li, Y. Jiao, C. Zhou, S. Ding, Different influence of sulfated chitosan with different sulfonic acid group sites on HUVECs behaviors, J. Biomater. Sci. Polym. Ed. 31(10) (2020) 1237-1253.
    [39] C. Wang, Y. Yu, H. Chen, S. Zhang, J. Wang, C. Liu, Construction of cytokine reservoirs based on sulfated chitosan hydrogels for the capturing of VEGF in situ, J Mater Chem B 7(11) (2019) 1882-1892.
    [40] X. Zhang, Y. Liu, S. Zhang, T. Shen, J. Wang, C. Liu, Potentiation effect on accelerating diabetic wound healing using 2-N,6-O-sulfated chitosan-doped PLGA scaffold, RSC Advances 8(34) (2018) 19085-19097.
    [41] P. Feng, Y. Luo, C. Ke, H. Qiu, W. Wang, Y. Zhu, R. Hou, L. Xu, S. Wu, Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications, Front Bioeng Biotechnol 9 (2021) 650598.
    [42] N. Mati-Baouche, P.-H. Elchinger, H. de Baynast, G. Pierre, C. Delattre, P. Michaud, Chitosan as an adhesive, Eur. Polym. J. 60 (2014) 198-212.
    [43] M. Burkatovskaya, G.P. Tegos, E. Swietlik, T.N. Demidova, P.C. A, M.R. Hamblin, Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice, Biomaterials 27(22) (2006) 4157-64.
    [44] X. Zhou, X. Zhang, J. Zhou, L. Li, An investigation of chitosan and its derivatives on red blood cell agglutination, RSC Advances 7(20) (2017) 12247-12254.
    [45] J.H. Ryu, J.S. Choi, E. Park, M.R. Eom, S. Jo, M.S. Lee, S.K. Kwon, H. Lee, Chitosan oral patches inspired by mussel adhesion, J. Control. Release 317 (2020) 57-66.
    [46] A.S. Halim, F.M. Nor, A.Z. Mat Saad, N.A. Mohd Nasir, B. Norsa'adah, Z. Ujang, Efficacy of chitosan derivative films versus hydrocolloid dressing on superficial wounds, J Taibah Univ Med Sci 13(6) (2018) 512-520.
    [47] G. Kammerlander, T. Eberlein, Nurses' views about pain and trauma at dressing changes: a central European perspective, J. Wound Care 11(2) (2002) 76-9.
    [48] M.H. Kang, S. Choi, B.H. Kim, Skin Wound Healing Effects and Action Mechanism of Acai Berry Water Extracts, Toxicol. Res. 33(2) (2017) 149-156.
    [49] K. Mukai, E. Komatsu, Y. Nakajima, T. Urai, Nasruddin, J. Sugama, T. Nakatani, The effect of 17beta-estradiol on cutaneous wound healing in protein-malnourished ovariectomized female mouse model, PLoS One 9(12) (2014) e115564.
    [50] M.F. Shih, M.D. Shau, M.Y. Chang, S.K. Chiou, J.K. Chang, J.Y. Cherng, Platelet adsorption and hemolytic properties of liquid crystal/composite polymers, Int J Pharm 327(1-2) (2006) 117-25.
    [51] G. Lan, B. Lu, T. Wang, L. Wang, J. Chen, K. Yu, J. Liu, F. Dai, D. Wu, Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent, Colloids Surf. B. Biointerfaces 136 (2015) 1026-34.
    [52] N. Aalizadeh, M. Pezeshki, M.R. Korramizadeh, M.B. Eslami, H. Zeraati, Assessment of indirect hemagglutination and zymography procedures in evaluation of gelatinase a in patients with benign and malignant prostate hyperplasia, Iran. J. Allergy Asthma Immunol. 2(3) (2003) 159-63.
    [53] A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, K. de la Caba, Chitosan as a bioactive polymer: Processing, properties and applications, Int. J. Biol. Macromol. 105(Pt 2) (2017) 1358-1368.
    [54] Y. Kong, X. Tang, Y. Zhao, X. Chen, K. Yao, L. Zhang, Q. Han, L. Zhang, J. Ling, Y. Wang, Y. Yang, Degradable tough chitosan dressing for skin wound recovery, Nanotechnology Reviews 9(1) (2020) 1576-1585.
    [55] H. Matsumura, R. Imai, N. Ahmatjan, Y. Ida, M. Gondo, D. Shibata, K. Wanatabe, Removal of adhesive wound dressing and its effects on the stratum corneum of the skin: comparison of eight different adhesive wound dressings, Int. Wound J. 11(1) (2014) 50-4.
    [56] J. Dissemond, Consider the Adhesives of Wound Dressings, Dtsch Arztebl Int 115(25) (2018) 427.
    [57] Y.T. Wu, Y.T. Wu, T.C. Huang, F.C. Su, I.M. Jou, C.C. Wu, Sequential inflammation model for Achilles tendinopathy by elastin degradation with treadmill exercise, J Orthop Translat 23 (2020) 113-121.
    [58] M.R. Buckley, E.B. Evans, P.E. Matuszewski, Y.L. Chen, L.N. Satchel, D.M. Elliott, L.J. Soslowsky, G.R. Dodge, Distributions of types I, II and III collagen by region in the human supraspinatus tendon, Connect Tissue Res 54(6) (2013) 374-9.
    [59] B.J. Larson, M.T. Longaker, H.P. Lorenz, Scarless fetal wound healing: a basic science review, Plast Reconstr Surg 126(4) (2010) 1172-1180.
    [60] H.I. Harn, R. Ogawa, C.K. Hsu, M.W. Hughes, M.J. Tang, C.M. Chuong, The tension biology of wound healing, Exp Dermatol 28(4) (2019) 464-471.
    [61] Q.Q. Fang, X.F. Wang, W.Y. Zhao, B.H. Shi, D. Lou, C.Y. Chen, M.X. Zhang, X. Wang, L. Ma, W.Q. Tan, Development of a Chitosan-Vaseline Gauze Dressing with Wound-Healing Properties in Murine Models, Am J Trop Med Hyg 102(2) (2020) 468-475.
    [62] C.G. Wang, Y.T. Lou, M.J. Tong, L.L. Zhang, Z.J. Zhang, Y.Z. Feng, S. Li, H.Z. Xu, C. Mao, Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1alpha/VEGF signaling, Acta Pharmacol. Sin. 39(3) (2018) 393-404.
    [63] A.M. Duijvestijn, H. van Goor, F. Klatter, G.D. Majoor, E. van Bussel, P.J. van Breda Vriesman, Antibodies defining rat endothelial cells: RECA-1, a pan-endothelial cell-specific monoclonal antibody, Lab. Invest. 66(4) (1992) 459-66.
    [64] Z. Hu, S. Lu, Y. Cheng, S. Kong, S. Li, C. Li, L. Yang, Investigation of the Effects of Molecular Parameters on the Hemostatic Properties of Chitosan, Molecules 23(12) (2018).
    [65] C. Yao, B. Zhou, Y. Miao, X.F. Liu, Development of gelatin/zein fibrous membranes for hemostatic application, Text Res J 86(10) (2016) 1023-1031.
    [66] M.A. Khan, M. Mujahid, A review on recent advances in chitosan based composite for hemostatic dressings, Int. J. Biol. Macromol. 124 (2019) 138-147.
    [67] A. Islam, T. Yasin, N. Gull, S.M. Khan, A. Sabir, M.A. Munawwar, M. Shafiq, T. Jamil, M.H. Raza, Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers, Int. J. Biol. Macromol. 92 (2016) 1-10.
    [68] B.K. Lal, S. Saito, P.J. Pappas, F.T. Padberg, Jr., J.J. Cerveira, R.W. Hobson, 2nd, W.N. Duran, Altered proliferative responses of dermal fibroblasts to TGF-beta1 may contribute to chronic venous stasis ulcer, J. Vasc. Surg. 37(6) (2003) 1285-93.
    [69] W.-C. Hsieh, J.-J. Liau, Y.-J. Li, Characterization and Cell Culture of a Grafted Chitosan Scaffold for Tissue Engineering, International Journal of Polymer Science 2015 (2015) 1-7.
    [70] I. Remez, L. Rabkin, H. Veksler, M. Baumane, Cytotoxicity of cadmium, selenium, zinc and copper to mouse myeloma sp2/0 cells as measured by the MTT assay, Altern Lab Anim 28(3) (2000) 473-6.
    [71] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65(1-2) (1983) 55-63.
    [72] A.B. Bello, D. Kim, D. Kim, H. Park, S.H. Lee, Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications, Tissue Eng Part B Rev 26(2) (2020) 164-180.
    [73] S. Dimassi, N. Tabary, F. Chai, N. Blanchemain, B. Martel, Sulfonated and sulfated chitosan derivatives for biomedical applications: A review, Carbohydr. Polym. 202 (2018) 382-396.
    [74] D.B. Gurevich, C.E. Severn, C. Twomey, A. Greenhough, J. Cash, A.M. Toye, H. Mellor, P. Martin, Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression, EMBO J. 37(13) (2018).
    [75] U. Mirastschijski, R. Schnabel, J. Claes, W. Schneider, M.S. Agren, C. Haaksma, J.J. Tomasek, Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function, Wound Repair Regen. 18(2) (2010) 223-34.
    [76] Y. Pan, J. Chen, Y. Yu, K. Dai, J. Wang, C. Liu, Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N,6-O-sulfated chitosan in bone regeneration, Biomater Sci 6(2) (2018) 431-439.
    [77] S. Samimi Gharaie, S. Habibi, H. Nazockdast, Fabrication and characterization of chitosan/gelatin/thermoplastic polyurethane blend nanofibers, Journal of Textiles and Fibrous Materials 1 (2018).
    [78] S.S.D. Ping He, Lisbeth Illum, <In vitro evaluation of the mucoadhesive properties of chitosan microspheres.pdf>, Int. J. Pharm. (1998).
    [79] A.Z. Bazmandeh, E. Mirzaei, M. Fadaie, S. Shirian, Y. Ghasemi, Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies, Int. J. Biol. Macromol. 162 (2020) 359-373.
    [80] Y. Okamoto, R. Yano, K. Miyatake, I. Tomohiro, Y. Shigemasa, S. Minami, Effects of chitin and chitosan on blood coagulation, Carbohydr. Polym. 53(3) (2003) 337-342.
    [81] F. Croisier, C. Jerome, Chitosan-based biomaterials for tissue engineering, Eur. Polym. J. 49(4) (2013) 780-792.
    [82] S.B. Rao, C.P. Sharma, Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential, J. Biomed. Mater. Res. 34(1) (1997) 21-28.
    [83] U. Thaler, E. Deusch, S.A. Kozek-Langenecker, In vitro effects of gelatin solutions on platelet function: a comparison with hydroxyethyl starch solutions, Anaesthesia 60(6) (2005) 554-559.
    [84] T.T.B. Nguyen, S. Hein, C.H. Ng, W.F. Stevens, Molecular stability of chitosan in acid solutions stored at various conditions, J. Appl. Polym. Sci. 107(4) (2008) 2588-2593.
    [85] R.L. Whistler, M. Kosik, Anticoagulant activity of oxidized and N- and O-sulfated chitosan, Arch Biochem Biophys 142(1) (1971) 106-10.
    [86] M. Imran, M. Sajwan, B. Alsuwayt, M. Asif, Synthesis, characterization and anticoagulant activity of chitosan derivatives, Saudi Pharm J 28(1) (2020) 25-32.
    [87] P. Seedevi, M. Moovendhan, S. Vairamani, A. Shanmugam, Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi, Int. J. Biol. Macromol. 99 (2017) 519-529.
    [88] Z.M. Zhong, X. Ji, R.E. Xing, S. Liu, Z.Y. Guo, X.L. Chen, P.C. Li, The preparation and antioxidant activity of the sulfanilamide derivatives of chitosan and chitosan sulfates, Biorg. Med. Chem. 15(11) (2007) 3775-3782.
    [89] R.E. Xing, H.H. Yu, S. Liu, W.W. Zhang, Q.B. Zhang, Z. Li, P.C. Li, Antioxidant activity of differently regioselective chitosan sulfates in vitro, Biorg. Med. Chem. 13(4) (2005) 1387-1392.
    [90] L.Y. Cao, J. Wang, J. Hou, W.L. Xing, C.S. Liu, Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2, Biomaterials 35(2) (2014) 684-698.
    [91] X. Kong, J. Wang, L. Cao, Y. Yu, C. Liu, Enhanced osteogenesis of bone morphology protein-2 in 2-N,6-O-sulfated chitosan immobilized PLGA scaffolds, Colloids Surf. B. Biointerfaces 122 (2014) 359-367.
    [92] L. Cao, Y. Yu, J. Wang, J.A. Werkmeister, K.M. McLean, C. Liu, 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction, Mater. Sci. Eng. C Mater. Biol. Appl. 74 (2017) 298-306.
    [93] Y. Yu, J. Chen, R. Chen, L. Cao, W. Tang, D. Lin, J. Wang, C. Liu, Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds, ACS Appl Mater Interfaces 7(18) (2015) 9982-90.
    [94] Y. Yu, R. Chen, Y. Sun, Y. Pan, W. Tang, S. Zhang, L. Cao, Y. Yuan, J. Wang, C. Liu, Manipulation of VEGF-induced angiogenesis by 2-N, 6-O-sulfated chitosan, Acta Biomater. 71 (2018) 510-521.
    [95] A.C.W. Ioannis A. Sogias, and Vitaliy V. Khutoryanskiy, Why is Chitosan Mucoadhesive?, Biomacromolecules (2018) 1837–1842.
    [96] P. Vongchan., W. Sajomsang., W. Kasinrerk., D. Subyen., P. Kongtawelert., Anticoagulant Activities of the Chitosan Polysulfate Synthesized from Marine Crab Shell by Semi-heterogeneous Conditions, ScienceAsia (2003) 115-120.
    [97] J. Suwan, Z. Zhang, B. Li, P. Vongchan, P. Meepowpan, F. Zhang, S.A. Mousa, S. Mousa, B. Premanode, P. Kongtawelert, R.J. Linhardt, Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity, Carbohydr. Res. 344(10) (2009) 1190-6.
    [98] P. Vongchan, W. Sajomsang, D. Subyen, P. Kongtawelert, Anticoagulant activity of a sulfated chitosan, Carbohydr. Res. 337(13) (2002) 1239-42.
    [99] A.F. Moraes, R.N.F. Moreira, C.C.O. Passos, A.P. Cunha, L.M.A.E. Silva, L.B.N. Freitas, N.F. Vasconcelos, N.M.P.S. Ricardo, K.M. Canuto, M.F. Rosa, L.K.A.M. Leal, R.S. Vieira, Hemocompatibility of 2-N-3,6-O-sulfated chitosan films, J. Appl. Polym. Sci. 136(9) (2019).
    [100] A.F. Morais, S.D.L. Gomes, C.C. de Souza, P. Chevallier, D. Mantovani, R.S. Vieira, Biopolymer-based coatings for cardiovascular applications, Biopolymer Membranes and Films2020, pp. 273-287.
    [101] M. Terbojevich, C. Carraro, A. Cosani, B. Focher, A.M. Naggi, G. Torri, Solution Studies of Chitosan 6-O-Sulfate, Makromol Chem 190(11) (1989) 2847-2855.
    [102] S. Yang, Y. Sun, Z. Geng, K. Ma, X. Sun, X. Fu, Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype, Int. J. Mol. Med. 37(5) (2016) 1263-73.
    [103] S.W. Yang, Z.J. Geng, K. Ma, X.Y. Sun, X.B. Fu, Comparison of the histological morphology between normal skin and scar tissue, J Huazhong Univ Sci Technolog Med Sci 36(2) (2016) 265-269.

    無法下載圖示 校內:2027-09-07公開
    校外:2027-09-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE