| 研究生: |
郭彥伶 Kuo, Yan-Ling |
|---|---|
| 論文名稱: |
促進皮膚再生的新型甲殼素敷料之研發 Development of new chitosan wound dressing for skin regeneration |
| 指導教授: |
吳佳慶
Wu, Chia-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 甲殼素敷料 、硫酸化甲殼素 、傷口癒合 |
| 外文關鍵詞: | Chitosan wound dressing, sulfated chitosan, wound healing |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] I. Negut, G. Dorcioman, V. Grumezescu, Scaffolds for Wound Healing Applications, Polymers (Basel) 12(9) (2020).
[2] M. Xue, C.J. Jackson, Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring, Adv Wound Care (New Rochelle) 4(3) (2015) 119-136.
[3] A. Sood, M.S. Granick, N.L. Tomaselli, Wound Dressings and Comparative Effectiveness Data, Adv Wound Care (New Rochelle) 3(8) (2014) 511-529.
[4] D. Okan, K. Woo, E.A. Ayello, G. Sibbald, The role of moisture balance in wound healing, Adv. Skin Wound Care 20(1) (2007) 39-53; quiz 53-5.
[5] S. Dhivya, V.V. Padma, E. Santhini, Wound dressings - a review, Biomedicine (Taipei) 5(4) (2015) 22.
[6] J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci. 97(8) (2008) 2892-923.
[7] Z. Obagi, G. Damiani, A. Grada, V. Falanga, Principles of Wound Dressings: A Review, Surg. Technol. Int. 35 (2019) 50-57.
[8] M. Collier, H. Hollinworth, Pain and tissue trauma during dressing change, Nurs. Stand. 14(40) (2000) 71-3.
[9] E.A. Kamoun, E.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J Adv Res 8(3) (2017) 217-233.
[10] M. Madaghiele, C. Demitri, A. Sannino, L. Ambrosio, Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates, Burns Trauma 2(4) (2014) 153-61.
[11] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nat Rev Mater 1(12) (2016).
[12] S. Trombino, R. Cassano, Special Issue on Designing Hydrogels for Controlled Drug Delivery: Guest Editors' Introduction, Pharmaceutics 12(1) (2020).
[13] B. Lanel, D. Barthes-Biesel, C. Regnier, T. Chauve, Swelling of hydrocolloid dressings, Biorheology 34(2) (1997) 139-53.
[14] F.V.D. A. Van Huis, Chapter 21 - Edible Insects: A Neglected and Promising Food Source, Sustainable Protein Sources, 2017.
[15] M. Prabaharan, Review paper: chitosan derivatives as promising materials for controlled drug delivery, J. Biomater. Appl. 23(1) (2008) 5-36.
[16] T. Dai, M. Tanaka, Y.Y. Huang, M.R. Hamblin, Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects, Expert Rev. Anti Infect. Ther. 9(7) (2011) 857-79.
[17] M.A. Matica, F.L. Aachmann, A. Tondervik, H. Sletta, V. Ostafe, Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action, Int. J. Mol. Sci. 20(23) (2019).
[18] J. Radwan-Praglowska, M. Piatkowski, V. Deineka, L. Janus, V. Korniienko, E. Husak, V. Holubnycha, I. Liubchak, V. Zhurba, A. Sierakowska, M. Pogorielov, D. Bogdal, Chitosan-Based Bioactive Hemostatic Agents with Antibacterial Properties-Synthesis and Characterization, Molecules 24(14) (2019).
[19] B. Sultankulov, D. Berillo, K. Sultankulova, T. Tokay, A. Saparov, Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine, Biomolecules 9(9) (2019).
[20] H.A.A.-L. Faruq Mohammad, and Hafiz N. Al-Haque, Chitosan-mediated fabrication of metal nanocomposites for enhanced biomedical applications, Advanced Materials Letters, 2017.
[21] J.M. de Lima, R.R. Sarmento, J.R. de Souza, F.A. Brayner, A.P. Feitosa, R. Padilha, L.C. Alves, I.J. Porto, R.F. Batista, J.E. de Oliveira, E.S. de Medeiros, P.R. Bonan, L.R. Castellano, Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes, Biomed Res Int 2015 (2015) 247965.
[22] Q. Fang, Z. Yao, L. Feng, T. Liu, S. Wei, P. Xu, R. Guo, B. Cheng, X. Wang, Antibiotic-loaded chitosan-gelatin scaffolds for infected seawater immersion wound healing, Int. J. Biol. Macromol. 159 (2020) 1140-1155.
[23] R. Jayakumar, N. Nwe, S. Tokura, H. Tamura, Sulfated chitin and chitosan as novel biomaterials, Int. J. Biol. Macromol. 40(3) (2007) 175-81.
[24] C. Ardean, C.M. Davidescu, N.S. Nemes, A. Negrea, M. Ciopec, N. Duteanu, P. Negrea, D. Duda-Seiman, V. Musta, Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization, Int. J. Mol. Sci. 22(14) (2021).
[25] X. Wang, J. Ma, Y. Wang, B. He, Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements, Biomaterials 23(21) (2002) 4167-76.
[26] X. Wang, J. Guan, X. Zhuang, Z. Li, S. Huang, J. Yang, C. Liu, F. Li, F. Tian, J. Wu, Z. Shu, Exploration of Blood Coagulation of N-Alkyl Chitosan Nanofiber Membrane in Vitro, Biomacromolecules 19(3) (2018) 731-739.
[27] D. Wang, N. Zhang, G. Meng, J. He, F. Wu, The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing, Colloids Surf. B. Biointerfaces 194 (2020) 111191.
[28] Y. Yang, R. Xing, S. Liu, Y. Qin, K. Li, H. Yu, P. Li, Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine, Carbohydr. Polym. 229 (2020) 115423.
[29] K.R. Holme, A.S. Perlin, Chitosan N-sulfate. A water-soluble polyelectrolyte, Carbohydr. Res. 302(1-2) (1997) 7-12.
[30] P. Seedevi, M. Moovendhan, S. Vairamani, A. Shanmugam, Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi, Int. J. Biol. Macromol. 99 (2017) 519-529.
[31] R. Xing, H. Yu, S. Liu, W. Zhang, Q. Zhang, Z. Li, P. Li, Antioxidant activity of differently regioselective chitosan sulfates in vitro, Bioorg Med Chem 13(4) (2005) 1387-92.
[32] N.M. Sarbon, S. Sandanamsamy, S.F. Kamaruzaman, F. Ahmad, Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties, J. Food Sci. Technol. 52(7) (2015) 4266-75.
[33] P. Ramasamy, N. Subhapradha, T. Thinesh, J. Selvin, K.M. Selvan, V. Shanmugam, A. Shanmugam, Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891), Int. J. Biol. Macromol. 99 (2017) 682-691.
[34] Q. Tian, X.H. Wang, W. Wang, C.N. Zhang, P. Wang, Z. Yuan, Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid, Nanomedicine 8(6) (2012) 870-9.
[35] T.J. Madera-Santana, C.H. Herrera-Méndez, J.R. Rodríguez-Núñez, An overview of the chemical modifications of chitosan and their advantages, Green Materials 6(4) (2018) 131-142.
[36] K. Ding, Y. Wang, H. Wang, L. Yuan, M. Tan, X. Shi, Z. Lyu, Y. Liu, H. Chen, 6-O-sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells, ACS Appl Mater Interfaces 6(22) (2014) 20043-50.
[37] H. Zhou, J. Qian, J. Wang, W. Yao, C. Liu, J. Chen, X. Cao, Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo, Biomaterials 30(9) (2009) 1715-24.
[38] G. Han, X. Xia, Z. Pan, Y. Lin, L. Li, Y. Jiao, C. Zhou, S. Ding, Different influence of sulfated chitosan with different sulfonic acid group sites on HUVECs behaviors, J. Biomater. Sci. Polym. Ed. 31(10) (2020) 1237-1253.
[39] C. Wang, Y. Yu, H. Chen, S. Zhang, J. Wang, C. Liu, Construction of cytokine reservoirs based on sulfated chitosan hydrogels for the capturing of VEGF in situ, J Mater Chem B 7(11) (2019) 1882-1892.
[40] X. Zhang, Y. Liu, S. Zhang, T. Shen, J. Wang, C. Liu, Potentiation effect on accelerating diabetic wound healing using 2-N,6-O-sulfated chitosan-doped PLGA scaffold, RSC Advances 8(34) (2018) 19085-19097.
[41] P. Feng, Y. Luo, C. Ke, H. Qiu, W. Wang, Y. Zhu, R. Hou, L. Xu, S. Wu, Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications, Front Bioeng Biotechnol 9 (2021) 650598.
[42] N. Mati-Baouche, P.-H. Elchinger, H. de Baynast, G. Pierre, C. Delattre, P. Michaud, Chitosan as an adhesive, Eur. Polym. J. 60 (2014) 198-212.
[43] M. Burkatovskaya, G.P. Tegos, E. Swietlik, T.N. Demidova, P.C. A, M.R. Hamblin, Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice, Biomaterials 27(22) (2006) 4157-64.
[44] X. Zhou, X. Zhang, J. Zhou, L. Li, An investigation of chitosan and its derivatives on red blood cell agglutination, RSC Advances 7(20) (2017) 12247-12254.
[45] J.H. Ryu, J.S. Choi, E. Park, M.R. Eom, S. Jo, M.S. Lee, S.K. Kwon, H. Lee, Chitosan oral patches inspired by mussel adhesion, J. Control. Release 317 (2020) 57-66.
[46] A.S. Halim, F.M. Nor, A.Z. Mat Saad, N.A. Mohd Nasir, B. Norsa'adah, Z. Ujang, Efficacy of chitosan derivative films versus hydrocolloid dressing on superficial wounds, J Taibah Univ Med Sci 13(6) (2018) 512-520.
[47] G. Kammerlander, T. Eberlein, Nurses' views about pain and trauma at dressing changes: a central European perspective, J. Wound Care 11(2) (2002) 76-9.
[48] M.H. Kang, S. Choi, B.H. Kim, Skin Wound Healing Effects and Action Mechanism of Acai Berry Water Extracts, Toxicol. Res. 33(2) (2017) 149-156.
[49] K. Mukai, E. Komatsu, Y. Nakajima, T. Urai, Nasruddin, J. Sugama, T. Nakatani, The effect of 17beta-estradiol on cutaneous wound healing in protein-malnourished ovariectomized female mouse model, PLoS One 9(12) (2014) e115564.
[50] M.F. Shih, M.D. Shau, M.Y. Chang, S.K. Chiou, J.K. Chang, J.Y. Cherng, Platelet adsorption and hemolytic properties of liquid crystal/composite polymers, Int J Pharm 327(1-2) (2006) 117-25.
[51] G. Lan, B. Lu, T. Wang, L. Wang, J. Chen, K. Yu, J. Liu, F. Dai, D. Wu, Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent, Colloids Surf. B. Biointerfaces 136 (2015) 1026-34.
[52] N. Aalizadeh, M. Pezeshki, M.R. Korramizadeh, M.B. Eslami, H. Zeraati, Assessment of indirect hemagglutination and zymography procedures in evaluation of gelatinase a in patients with benign and malignant prostate hyperplasia, Iran. J. Allergy Asthma Immunol. 2(3) (2003) 159-63.
[53] A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, K. de la Caba, Chitosan as a bioactive polymer: Processing, properties and applications, Int. J. Biol. Macromol. 105(Pt 2) (2017) 1358-1368.
[54] Y. Kong, X. Tang, Y. Zhao, X. Chen, K. Yao, L. Zhang, Q. Han, L. Zhang, J. Ling, Y. Wang, Y. Yang, Degradable tough chitosan dressing for skin wound recovery, Nanotechnology Reviews 9(1) (2020) 1576-1585.
[55] H. Matsumura, R. Imai, N. Ahmatjan, Y. Ida, M. Gondo, D. Shibata, K. Wanatabe, Removal of adhesive wound dressing and its effects on the stratum corneum of the skin: comparison of eight different adhesive wound dressings, Int. Wound J. 11(1) (2014) 50-4.
[56] J. Dissemond, Consider the Adhesives of Wound Dressings, Dtsch Arztebl Int 115(25) (2018) 427.
[57] Y.T. Wu, Y.T. Wu, T.C. Huang, F.C. Su, I.M. Jou, C.C. Wu, Sequential inflammation model for Achilles tendinopathy by elastin degradation with treadmill exercise, J Orthop Translat 23 (2020) 113-121.
[58] M.R. Buckley, E.B. Evans, P.E. Matuszewski, Y.L. Chen, L.N. Satchel, D.M. Elliott, L.J. Soslowsky, G.R. Dodge, Distributions of types I, II and III collagen by region in the human supraspinatus tendon, Connect Tissue Res 54(6) (2013) 374-9.
[59] B.J. Larson, M.T. Longaker, H.P. Lorenz, Scarless fetal wound healing: a basic science review, Plast Reconstr Surg 126(4) (2010) 1172-1180.
[60] H.I. Harn, R. Ogawa, C.K. Hsu, M.W. Hughes, M.J. Tang, C.M. Chuong, The tension biology of wound healing, Exp Dermatol 28(4) (2019) 464-471.
[61] Q.Q. Fang, X.F. Wang, W.Y. Zhao, B.H. Shi, D. Lou, C.Y. Chen, M.X. Zhang, X. Wang, L. Ma, W.Q. Tan, Development of a Chitosan-Vaseline Gauze Dressing with Wound-Healing Properties in Murine Models, Am J Trop Med Hyg 102(2) (2020) 468-475.
[62] C.G. Wang, Y.T. Lou, M.J. Tong, L.L. Zhang, Z.J. Zhang, Y.Z. Feng, S. Li, H.Z. Xu, C. Mao, Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1alpha/VEGF signaling, Acta Pharmacol. Sin. 39(3) (2018) 393-404.
[63] A.M. Duijvestijn, H. van Goor, F. Klatter, G.D. Majoor, E. van Bussel, P.J. van Breda Vriesman, Antibodies defining rat endothelial cells: RECA-1, a pan-endothelial cell-specific monoclonal antibody, Lab. Invest. 66(4) (1992) 459-66.
[64] Z. Hu, S. Lu, Y. Cheng, S. Kong, S. Li, C. Li, L. Yang, Investigation of the Effects of Molecular Parameters on the Hemostatic Properties of Chitosan, Molecules 23(12) (2018).
[65] C. Yao, B. Zhou, Y. Miao, X.F. Liu, Development of gelatin/zein fibrous membranes for hemostatic application, Text Res J 86(10) (2016) 1023-1031.
[66] M.A. Khan, M. Mujahid, A review on recent advances in chitosan based composite for hemostatic dressings, Int. J. Biol. Macromol. 124 (2019) 138-147.
[67] A. Islam, T. Yasin, N. Gull, S.M. Khan, A. Sabir, M.A. Munawwar, M. Shafiq, T. Jamil, M.H. Raza, Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers, Int. J. Biol. Macromol. 92 (2016) 1-10.
[68] B.K. Lal, S. Saito, P.J. Pappas, F.T. Padberg, Jr., J.J. Cerveira, R.W. Hobson, 2nd, W.N. Duran, Altered proliferative responses of dermal fibroblasts to TGF-beta1 may contribute to chronic venous stasis ulcer, J. Vasc. Surg. 37(6) (2003) 1285-93.
[69] W.-C. Hsieh, J.-J. Liau, Y.-J. Li, Characterization and Cell Culture of a Grafted Chitosan Scaffold for Tissue Engineering, International Journal of Polymer Science 2015 (2015) 1-7.
[70] I. Remez, L. Rabkin, H. Veksler, M. Baumane, Cytotoxicity of cadmium, selenium, zinc and copper to mouse myeloma sp2/0 cells as measured by the MTT assay, Altern Lab Anim 28(3) (2000) 473-6.
[71] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65(1-2) (1983) 55-63.
[72] A.B. Bello, D. Kim, D. Kim, H. Park, S.H. Lee, Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications, Tissue Eng Part B Rev 26(2) (2020) 164-180.
[73] S. Dimassi, N. Tabary, F. Chai, N. Blanchemain, B. Martel, Sulfonated and sulfated chitosan derivatives for biomedical applications: A review, Carbohydr. Polym. 202 (2018) 382-396.
[74] D.B. Gurevich, C.E. Severn, C. Twomey, A. Greenhough, J. Cash, A.M. Toye, H. Mellor, P. Martin, Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression, EMBO J. 37(13) (2018).
[75] U. Mirastschijski, R. Schnabel, J. Claes, W. Schneider, M.S. Agren, C. Haaksma, J.J. Tomasek, Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function, Wound Repair Regen. 18(2) (2010) 223-34.
[76] Y. Pan, J. Chen, Y. Yu, K. Dai, J. Wang, C. Liu, Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N,6-O-sulfated chitosan in bone regeneration, Biomater Sci 6(2) (2018) 431-439.
[77] S. Samimi Gharaie, S. Habibi, H. Nazockdast, Fabrication and characterization of chitosan/gelatin/thermoplastic polyurethane blend nanofibers, Journal of Textiles and Fibrous Materials 1 (2018).
[78] S.S.D. Ping He, Lisbeth Illum, <In vitro evaluation of the mucoadhesive properties of chitosan microspheres.pdf>, Int. J. Pharm. (1998).
[79] A.Z. Bazmandeh, E. Mirzaei, M. Fadaie, S. Shirian, Y. Ghasemi, Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies, Int. J. Biol. Macromol. 162 (2020) 359-373.
[80] Y. Okamoto, R. Yano, K. Miyatake, I. Tomohiro, Y. Shigemasa, S. Minami, Effects of chitin and chitosan on blood coagulation, Carbohydr. Polym. 53(3) (2003) 337-342.
[81] F. Croisier, C. Jerome, Chitosan-based biomaterials for tissue engineering, Eur. Polym. J. 49(4) (2013) 780-792.
[82] S.B. Rao, C.P. Sharma, Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential, J. Biomed. Mater. Res. 34(1) (1997) 21-28.
[83] U. Thaler, E. Deusch, S.A. Kozek-Langenecker, In vitro effects of gelatin solutions on platelet function: a comparison with hydroxyethyl starch solutions, Anaesthesia 60(6) (2005) 554-559.
[84] T.T.B. Nguyen, S. Hein, C.H. Ng, W.F. Stevens, Molecular stability of chitosan in acid solutions stored at various conditions, J. Appl. Polym. Sci. 107(4) (2008) 2588-2593.
[85] R.L. Whistler, M. Kosik, Anticoagulant activity of oxidized and N- and O-sulfated chitosan, Arch Biochem Biophys 142(1) (1971) 106-10.
[86] M. Imran, M. Sajwan, B. Alsuwayt, M. Asif, Synthesis, characterization and anticoagulant activity of chitosan derivatives, Saudi Pharm J 28(1) (2020) 25-32.
[87] P. Seedevi, M. Moovendhan, S. Vairamani, A. Shanmugam, Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi, Int. J. Biol. Macromol. 99 (2017) 519-529.
[88] Z.M. Zhong, X. Ji, R.E. Xing, S. Liu, Z.Y. Guo, X.L. Chen, P.C. Li, The preparation and antioxidant activity of the sulfanilamide derivatives of chitosan and chitosan sulfates, Biorg. Med. Chem. 15(11) (2007) 3775-3782.
[89] R.E. Xing, H.H. Yu, S. Liu, W.W. Zhang, Q.B. Zhang, Z. Li, P.C. Li, Antioxidant activity of differently regioselective chitosan sulfates in vitro, Biorg. Med. Chem. 13(4) (2005) 1387-1392.
[90] L.Y. Cao, J. Wang, J. Hou, W.L. Xing, C.S. Liu, Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2, Biomaterials 35(2) (2014) 684-698.
[91] X. Kong, J. Wang, L. Cao, Y. Yu, C. Liu, Enhanced osteogenesis of bone morphology protein-2 in 2-N,6-O-sulfated chitosan immobilized PLGA scaffolds, Colloids Surf. B. Biointerfaces 122 (2014) 359-367.
[92] L. Cao, Y. Yu, J. Wang, J.A. Werkmeister, K.M. McLean, C. Liu, 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction, Mater. Sci. Eng. C Mater. Biol. Appl. 74 (2017) 298-306.
[93] Y. Yu, J. Chen, R. Chen, L. Cao, W. Tang, D. Lin, J. Wang, C. Liu, Enhancement of VEGF-Mediated Angiogenesis by 2-N,6-O-Sulfated Chitosan-Coated Hierarchical PLGA Scaffolds, ACS Appl Mater Interfaces 7(18) (2015) 9982-90.
[94] Y. Yu, R. Chen, Y. Sun, Y. Pan, W. Tang, S. Zhang, L. Cao, Y. Yuan, J. Wang, C. Liu, Manipulation of VEGF-induced angiogenesis by 2-N, 6-O-sulfated chitosan, Acta Biomater. 71 (2018) 510-521.
[95] A.C.W. Ioannis A. Sogias, and Vitaliy V. Khutoryanskiy, Why is Chitosan Mucoadhesive?, Biomacromolecules (2018) 1837–1842.
[96] P. Vongchan., W. Sajomsang., W. Kasinrerk., D. Subyen., P. Kongtawelert., Anticoagulant Activities of the Chitosan Polysulfate Synthesized from Marine Crab Shell by Semi-heterogeneous Conditions, ScienceAsia (2003) 115-120.
[97] J. Suwan, Z. Zhang, B. Li, P. Vongchan, P. Meepowpan, F. Zhang, S.A. Mousa, S. Mousa, B. Premanode, P. Kongtawelert, R.J. Linhardt, Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity, Carbohydr. Res. 344(10) (2009) 1190-6.
[98] P. Vongchan, W. Sajomsang, D. Subyen, P. Kongtawelert, Anticoagulant activity of a sulfated chitosan, Carbohydr. Res. 337(13) (2002) 1239-42.
[99] A.F. Moraes, R.N.F. Moreira, C.C.O. Passos, A.P. Cunha, L.M.A.E. Silva, L.B.N. Freitas, N.F. Vasconcelos, N.M.P.S. Ricardo, K.M. Canuto, M.F. Rosa, L.K.A.M. Leal, R.S. Vieira, Hemocompatibility of 2-N-3,6-O-sulfated chitosan films, J. Appl. Polym. Sci. 136(9) (2019).
[100] A.F. Morais, S.D.L. Gomes, C.C. de Souza, P. Chevallier, D. Mantovani, R.S. Vieira, Biopolymer-based coatings for cardiovascular applications, Biopolymer Membranes and Films2020, pp. 273-287.
[101] M. Terbojevich, C. Carraro, A. Cosani, B. Focher, A.M. Naggi, G. Torri, Solution Studies of Chitosan 6-O-Sulfate, Makromol Chem 190(11) (1989) 2847-2855.
[102] S. Yang, Y. Sun, Z. Geng, K. Ma, X. Sun, X. Fu, Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype, Int. J. Mol. Med. 37(5) (2016) 1263-73.
[103] S.W. Yang, Z.J. Geng, K. Ma, X.Y. Sun, X.B. Fu, Comparison of the histological morphology between normal skin and scar tissue, J Huazhong Univ Sci Technolog Med Sci 36(2) (2016) 265-269.
校內:2027-09-07公開