簡易檢索 / 詳目顯示

研究生: 顏胤如
Yen, Yin-Ju
論文名稱: 高能量密度鋰硫電池的硫化物材料開發與電化學機制
The Material Development and Electrochemical Mechanisms of Sulfides in Designing High-energy-density Lithium-sulfur Batteries
指導教授: 鍾昇恆
Chung, Sheng-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 134
中文關鍵詞: 多硫化物硫化鋰硫化物固態電解質鋰硫電池
外文關鍵詞: sulfur, polysulfide, lithium sulfide, sulfide solid electrolyte, lithium-sulfur batteries
相關次數: 點閱:83下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為研發具競爭力之低成本與高能量密度的先進儲能設備,以因應現今社會逐漸迫切之能源需求,鋰硫電池作為一具有豐富材料資源、高理論電容量 (1,675 mA·h g-1) 與高能量密度 (2,600 W·h kg-1) 之可充電電池設計,可作為未來最具潛力之儲能系統發展選項;然而,商業化鋰硫電池需同時提升活性物質載量並下降電解液使用量以提升其能量密度,而上述條件則成為鋰硫電池發展中難以突破之瓶頸。
    為追求可達商業化鋰硫電池需求之性能,本研究共提出四種鋰硫電池結構,分別針對鋰硫電池之陰極材料與固態電解質進行討論。陰極設計方面,分別以純硫、多硫化物與硫化鋰等硫還原衍生產物作為鋰硫電池陰極活性材料,藉由使用選擇性化學吸附材料 (環安息香酯)、無微孔之集流體設計 (商用奈米碳管/奈米碳纖維) 與可降低硫化鋰活化電位之材料 (硫化磷),於三種不同之陰極設計中皆達成高硫載量、高硫含量與寡電解液之條件,並同時達到高放電容量、高能量密度與長循環壽命之電化學性能;此外,更延伸硫化物之應用,提出以多硫化物陰極搭配具高導離子性之硫化物固態電解質的固態鋰硫電池設計,改善過往文獻中固態鋰硫電池陰極與固態電解質間之固相介面電阻問題,並有效提升陰極硫載量與含量,達成商業化鋰硫電池所需之高活性物質載量與寡電解液環境需求。

    The Material Development and Electrochemical Mechanisms of Sulfides in Designing High-energy-density Lithium-sulfur Batteries
    Author: Yin-Ju Yen
    Advisor: Sheng-Heng Chung
    Department of Materials Science and Engineering, College of Engineering
    National Cheng Kung University

    INTRODUCTION

    Lithium-sulfur battery is an electrochemical system featuring a high theoretical charge-storage capacity of 1,675 mA·h g-1 and a low material cost of $150 per ton. The high abundance of sulfur turns the lithium-sulfur batteries into one of the most expectedly rechargeable batteries in the next generation. To realize the commercialization of lithium-sulfur batteries, high energy density is required for the current studies, which may be achieved by increasing the sulfur loading and content, and decreasing the added amount of electrolyte. However, the insulating nature of the sulfur cathode with a high loading and content, and the lean electrolyte condition leads to the difficulty in the lithium-ion transfer. The repeated conversion between the solid/liquid active materials is thus blocked and contributes to the deterioration of the cell performance.
    In pursuit of high-energy-density lithium-sulfur batteries, we demonstrate four different designs of the cell structures, including applications of three cathode materials and one cell design with the solid electrolyte material. For the cathode designs, we adopt sulfur, polysulfide and lithium sulfide, as the active materials. In the modification of sulfur cathode, sulfur is incorporated with a porous molecular crystal for its selective adsorption property. In the polysulfide cathode, a non-microporous current collector is applied for the prevention of fast electrolyte consumption. In the lithium sulfide cathode, phosphorous pentasulfide is added to form ionically-conductive materials. With the three cathode designs, the high sulfur loading, the high sulfur content, and the lean electrolyte-to-sulfur ratios are all achieved. In addition, they all attain desirable electrochemical performances of a high charge-storage capacity, a high energy density, and a long cycle life. Moreover, we further extend the application of sulfide materials to sulfide solid electrolytes. With the novel incorporation of a highly ionically conductive sulfide solid electrolyte and a polysulfide cathode, the high solid/solid interface resistance between the sulfur cathode and the solid electrolyte in common solid-state lithium-sulfur batteries can be significantly improved. The enhanced sulfur loading and sulfur content brought by the polysulfide cathode and the improved contact interface provides a new research direction for developing all-solid-state lithium-sulfur batteries with high energy densities.

    MATERIALS AND METHODS
    The first cathode design is to incorporate sulfur with a porous molecular crystal material, cyclobenzoin ester, by a sulfur-melting method. The second cathode design is the application of a non-microporous carbon nanotube/nanofiber (CNT/CNF) as the polysulfide cathode substrate by a drop-casting method. The third cathode design is the addition of phosphorus pentasulfide (P2S5) in the lithium sulfide (Li2S) catholyte to synthesize the Li2S-P2S5-based cathodes at a low temperature. The last cell design is the adoption of the polysulfide cathode with the ball-milled sulfide solid electrolyte to fabricate a solid-state lithium-sulfur battery.

    RESULTS AND DISCUSSION
    In the cathode design of sulfur with cyclobenzoin ester, the abundant carbonyl groups in cyclobenzoin ester provide an efficient accommodation for polysulfide adsorption, despite of its porous structure, as shown in Figure 1 (a). With this merit, we improve the cell-fabrication parameters to a high sulfur loading of 4 mg cm-2, a high sulfur content of 80 wt%, and a lean electrolyte-to-sulfur ratio of 4 μL mg-1. The selective adsorption behavior of cyclobenzoin ester between the polysulfide and electrolyte prevents the fast electrolyte consumption and enhances cycling performances.
    In the cathode design of the CNT/CNF-polysulfide cathode, the non-microporous CNT/CNF substrate maintains well electrochemical conversion of polysulfides by inhibiting fast electrolyte adsorption by micropores. Therefore, we simultaneously achieve a high sulfur loading of 8.64 mg cm-2, a high sulfur content of 68 wt%, and low electrolyte-to-sulfur ratios of 7–4 μL mg-1. Besides, we propose the cell failure mechanism under high-loading and lean-electrolyte condition with the observation of dropped Coulombic efficiency and overcharge behavior at a slow rate, as shown in Figure 1 (b).
    In the cathode design of Li2S-P2S5-based cathodes, we present a facile and low-temperature synthesis of ionically-conductive thiophosphates during the cathode fabrication, as shown in Figure 1 (c). With the improved ionic conductivity in the cathode, we elevate the cell-fabrication parameters to a high Li2S loading of 3.75 mg cm-2, a high Li2S content of 71 wt%, and a low electrolyte-to-Li2S ratio of 10 μL mg-1. In addition, we confirm the reduction of the activation overpotential of Li2S with the help of P2S5 to prevent the electrolyte decomposition at high working voltages and thus improve the electrochemical performance.
    In the cell design of the solid-state lithium-sulfur cell, we declare the application of polysulfide cathode with the sulfide solid electrolyte to replace the traditional solid/solid interface between the sulfur cathode and the solid electrolyte to the liquid/solid interface, as shown in Figure 1 (d). This improved interface contact betters the charge transfer and thus enhances the loading of active material and the cycle life. Therefore, we increase the cell-fabrication parameters to high sulfur loading and content of 3–5 mg cm-2 and 66 wt%, with a long cycle life of 80–100 cycles at a C/20 rate.


    Figure 1. The schematic mechanism of the proposed cathode and cell structures: (a) The polysulfide adsorption by the cyclobenzoin ester, (b) the conversion of active materials and the indicators of the cell failure, (c) the lithium-ion transfer promoted by ionically conductive thiophosphates in the Li2S-P2S5-based cathodes, and (d) the lithium-ion diffusion in the solid-state lithium-sulfur cell.

    CONCLUSION
    In this study, we discuss the different cathode designs based on the materials generated in the electrochemical conversion of the sulfur active material. With sulfur, polysulfide, and lithium sulfide as the active material, we all have excellent cell-fabrication parameters and cell performances, respectively. Furthermore, we extend the use of the sulfide material to sulfide solid electrolyte. Both the novel cell design and cathode structures attain high energy densities and long cycle life.

    摘要 i Extended Abstract ii 誌謝 vi 目錄 vii 表目錄 xi 圖目錄 xii 第一章、緒論與文獻回顧 1 1. 1. 鋰硫電池介紹 1 1. 1. 1. 鋰硫電池概述 1 1. 1. 2. 鋰硫電池工作原理 1 1. 1. 3. 鋰硫電池結構與材料問題 3 1. 2. 硫化物陰極 5 1. 2. 1. 硫陰極 5 1. 2. 2. 多硫化物陰極 6 1. 2. 3. 硫化鋰陰極 7 1. 3. 硫化物固態電解質 (Li2S-P2S5二元系統) 9 1. 3. 1. 固相合成法 9 1. 3. 2. 行星式球磨法 9 1. 3. 3. 液相合成法 9 1. 3. 4. 固態鋰硫電池 9 第二章、實驗設計 11 2. 1. 製備硫-環安息香酯複合粉末 11 2. 1. 1. 空白電解液 11 2. 1. 2. 硫-環安息香酯複合粉末 11 2. 1. 3. 硫-導電碳黑參考電極 11 2. 2. 製備多硫化物陰極液 12 2. 2. 1. 空白電解液 12 2. 2. 2. 多硫化物陰極液 12 2. 3. 製備硫化鋰陰極液 13 2. 3. 1. 空白電解液 13 2. 3. 2. 硫化鋰-硫化磷混合粉末 13 2. 3. 3. 硫化鋰與硫化鋰-硫化磷陰極液 13 2. 4. 製備硫化鋰-硫化磷固態電解質 14 2. 4. 1. 硫化鋰-硫化磷混合粉末與球磨製程 14 2. 4. 2. 固態電解質粉末成型 14 2. 4. 3. 製備多硫化物陰極液 14 2. 5. 電池組裝結構 15 2. 5. 1. 製備硫-環安息香酯複合陰極電池 15 2. 5. 2. 製備多硫化物陰極電池 15 2. 5. 3. 製備硫化鋰陰極電池 15 2. 5. 4. 製備硫化鋰-硫化磷固態電解質電池 16 第三章、實驗分析儀器 17 3. 1. 氣體吸脫附分析儀 17 3. 2. 場發射掃描式電子顯微鏡與能量色散X射線光譜 18 3. 3. 粉末X光二維繞射儀 19 3. 4. 熱重分析儀 20 3. 5. 紫外光-可見光分光光譜儀 21 3. 6. 微拉曼及微光激發光譜儀 22 3. 7. 化學分析電子光譜儀 23 3. 8. 電化學阻抗分析儀 24 3. 9. 電池循環測試機 26 3. 10. 恆電位/恆電流儀 28 第四章、結果與討論 30 4. 1. 硫-環安息香酯陰極 30 4. 1. 1. 物化性分析 30 4. 1. 2. 電性與電化學分析 35 4. 1. 3. 化學吸附之探討 45 4. 2. 多硫化物陰極 52 4. 2. 1. 物性分析 52 4. 2. 2. 電性與電化學分析 55 4. 2. 3. 電池失效分析 58 4. 3. 硫化鋰陰極 65 4. 3. 1. 表面形貌與元素分布分析 65 4. 3. 2. 晶體結構分析 78 4. 3. 3. 拉曼光譜分析 80 4. 3. 4. 化學分析電子光譜 82 4. 3. 5. 電性及電化學分析 90 4. 3. 6. 循環性能分析 95 4. 4. 硫化鋰-硫化磷固態電解質 104 4. 4. 1. 物性及化性分析 104 4. 4. 2. 電性及電化學分析 106 第五章、本研究之創新性、學術性、與應用性 112 第六章、結論 113 6. 1. 硫-環安息香酯陰極 113 6. 2. 多硫化物陰極 114 6. 3. 硫化鋰陰極 115 6. 4. 硫化鋰-硫化磷固態電解質 116 第七章、參考文獻 117

    [1] M. Zhao, B. Q. Li, H. J. Peng, H. Yuan, J. Y. Wei, J. Q. Huang, “Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities,” Angew. Chem. Int. Ed., 59(31), 12636–12652, 2020.
    [2] J. He, A. Manthiram, “A review on the status and challenges of electrocatalysts in lithium-sulfur batteries,” Energy Storage Mater., 20, 55–70, 2019.
    [3] G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, “Revisiting the role of polysulfides in lithium–sulfur batteries,” Adv. Mater., 30(22), 1705590, 2018.
    [4] H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, “Review on high‐loading and high‐energy lithium–sulfur batteries,” Adv. Energy Mater., 7(24), 1700260, 2017.
    [5] C. Barchasz, F. Molton, C. Duboc, J.-C. Leprêtre, S. Patoux, F. Alloin, “Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification,” Anal. Chem., 84(9), 3973–3980, 2012.
    [6] M. Wild, L. O’Neill, T. Zheng, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, “Lithium sulfur batteries, a mechanistic review,” Energy Environ. Sci., 8(12), 3477–3494, 2015.
    [7] D. Bresser, S. Passerini, B. Scrosati, “Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review,” Chem. Commun., 49(90), 10545–10562, 2013.
    [8] Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, ” Lithium–sulfur batteries: electrochemistry, materials, and prospects,” Angew. Chem. Int. Ed., 52(50), 13186–13200, 2013.
    [9] S. Li, Z. Fan, “Encapsulation methods of sulfur particles for lithium-sulfur batteries: a review,” Energy Storage Mater., 34, 107–127, 2021.
    [10] R. Mukkabla, M. R. Buchmeiser, “Cathode materials for lithium–sulfur batteries based on sulfur covalently bound to a polymeric backbone,” J. Mater. Chem. A, 8(11), 5379–5394, 2020.
    [11] X. Zhang, K. Chen, Z. Sun, G. Hu, R. Xiao, H. M. Cheng, F. Li, “Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries,” Energy Environ. Sci., 13(4), 1076–1095, 2020.
    [12] L. Huang, J. Li, B. Liu, Y. Li, S. Shen, S. Deng, C. Lu, W. Zhang, Y. Xia, G. Pan, X. Wang, Q. Xiong, Q. Xia, J. Tu, “Electrode design for lithium–sulfur batteries: problems and solutions,” Adv. Func. Mater., 30(22), 1910375, 2020.
    [13] R. Fang, S. Zhao, S. Pei, X. Qian, P. X. Hou, H. M. Cheng, C. Liu, F. Li, “Toward more reliable lithium–sulfur batteries: an all-graphene cathode structure,” ACS Nano, 10(9), 8676–8682, 2016.
    [14] S.-H. Chung, A. Manthiram, “Designing lithium–sulfur batteries with high-loading cathodes at a lean electrolyte condition,” ACS Appl. Mater. Interfaces, 10(50), 43749–43759, 2018.
    [15] M. Wang, X. Xia, Y. Zhong, J. Wu, R. Xu, Z. Yao, D. Wang, W. Tang, X. Wang, J. Tu, “Porous carbon hosts for lithium–sulfur batteries,” Chem. Eur. J., 25(15), 3710–3725, 2019.
    [16] L. Du, X. Cheng, F. Gao, Y. Li, Y. Bu, Z. Zhang, Q. Wu, L. Yang, X. Wang, Z. Hu, “Electrocatalysis of S-doped carbon with weak polysulfide adsorption enhances lithium–sulfur battery performance,” Chem. Commun., 55(45), 6365–6368, 2019.
    [17] X. Li, Y. Zhang, S. Wang, Y. Liu, Y. Ding, G. He, X. Jiang, W. Xiao, G. Yu, “Scalable high-areal-capacity Li–S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption,” Nano Lett., 20(9), 6922–6929, 2020.
    [18] G. Li, W. Lei, D. Luo, Y. P. Deng, D. Wang, Z. Chen, “3D porous carbon sheets with multidirectional ion pathways for fast and durable lithium–sulfur batteries,” Adv. Energy Mater., 8(8), 1702381, 2018.
    [19] D.-R. Deng, X.-Y. Cui, X.-X. Fan, J.-Q. Zheng, X.-H. Fan, Q.-H. Wu, M.-S. Zheng, Q.-F. Dong, “Integration of adsorption and catalytic active sites in cobalt iron oxide nanorods for an excellent performance Li–S battery with a wide temperature range,” Sustain. Energy Fuels, 5(17), 4284–4288, 2021.
    [20] S. Li, J. Lin, Y. Ding, P. Xu, X. Guo, W. Xiong, D.-Y. Wu, Q. Dong, J. Chen, L. Zhang, “Defects engineering of lightweight metal–organic frameworks-based electrocatalytic membrane for high-loading lithium–sulfur batteries,” ACS Nano, 15(8), 13803–13813, 2021.
    [21] N. Zhang, Y. Yang, X. Feng, S. H. Yu, J. Seok, D. A. Muller, H. D. Abruña, “Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li–S batteries,” J. Mater. Chem. A, 7(37), 21128–21139, 2019.
    [22] M. Zhao, B. Q. Li, X. Q. Zhang, J. Q. Huang, Q. Zhang, “A perspective toward practical lithium–sulfur batteries,” ACS Cent. Sci., 6(7), 1095–1104, 2020.
    [23] Y. T. Liu, S. Liu, G. R. Li, X. P. Gao, “Strategy of enhancing the volumetric energy density for lithium–sulfur batteries,” Adv. Mater., 33(8), 2003955, 2021.
    [24] X. Ji, K. T. Lee, L. F. Nazar, “A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries,” Nat. Mater., 8(6), 500–506, 2009.
    [25] Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, “Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes,” Nat. Energy, 1(9), 1–11, 2016.
    [26] C. Deng, Z. Wang, S. Wang, J. Yu, “Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies,” J. Mater. Chem. A, 7(20), 12381–12413, 2019.
    [27] H. Du, S. Li, H. Qu, B. Lu, X. Wang, J. Chai, H. Zhang, J. Ma, Z. Zhang, G. Cui, “Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups,” J. Membr. Sci., 550, 399–406, 2018.
    [28] Y. V. Mikhaylik, J. R. Akridge, “Polysulfide shuttle study in the Li/S battery system,” J. Electrochem. Soc., 151(11), A1969–A1976, 2004.
    [29] S. S. Zhang, “New insight into liquid electrolyte of rechargeable lithium/sulfur battery,” Electrochim. Acta, 97, 226–230, 2013.
    [30] R. Xu, J. C. M. Li, J. Lu, K. Amine, I. Belharouak, “Demonstration of highly efficient lithium–sulfur batteries,” J. Mater. Chem. A, 3(8), 4170–4179, 2015.
    [31] Q. He, A. T. S. Freiberg, M. U. M. Patel, S. Qian, H. A. Gasteiger, “Operando identification of liquid intermediates in lithium–sulfur batteries via transmission UV–vis spectroscopy,” J. Electrochem. Soc., 167(8), 080508, 2020.
    [32] Y. Fu, Y.-S. Su, A. Manthiram, “Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes,” Angew. Chem. Int. Ed., 52(27), 6930–6935, 2013.
    [33] F. Li, Y. Si, Z. Li, W. Guo, Y. Fu, “Intermolecular cyclic polysulfides as cathode materials for rechargeable lithium batteries,” J. Mater. Chem. A, 8(1), 87–90, 2020.
    [34] S. Urbonaite, T. Poux, P. Novák, “Progress towards commercially viable Li–S battery cells,” Adv. Energy Mater., 5(16), 1500118, 2015.
    [35] M. Liu, X. Qin, Y.-B. He, B. Li, F. Kang, “Recent innovative configurations in high-energy lithium–sulfur batteries,” J. Mater. Chem. A, 5(11), 5222–5234, 2017.
    [36] J.-Q. Huang, Q. Zhang, F. Wei, “Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects,” Energy Storage Mater., 1, 127–145, 2015.
    [37] R. Chen, T. Zhao, F. Wu, “From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels,” Chem. Commun., 51(1), 18–33, 2015.
    [38] R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng, F. Li, “More reliable lithium‐sulfur batteries: status, solutions and prospects,” Adv. Mater., 29(48), 1606823, 2017.
    [39] S.-H. Chung, C.-H. Chang, A. Manthiram, “Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries,” J. Power Sources, 334, 179–190, 2016.
    [40] Q. Zhang, F. Li, J.-Q. Huang, H. Li, “Lithium–sulfur batteries: co‐existence of challenges and opportunities,” Adv. Funct. Mater., 28(38), 1804589, 2018.
    [41] S.-H. Chung, A. Manthiram, “Current status and future prospects of metal–sulfur batteries,” Adv. Mater., 31(27), 1901125, 2019.
    [42] T. O. Ely, D. Kamzabek, D. Chakraborty, M. F. Doherty, “Lithium–sulfur batteries: state of the art and future directions,” ACS Appl. Energy Mater., 1(5), 1783–1814, 2018.
    [43] A. Kilic, Ç. Odabaşı, R. Yildirim, D. Eroglu, “Assessment of critical materials and cell design factors for high performance lithium-sulfur batteries using machine learning,” Chem. Eng. J., 390, 124117, 2020.
    [44] N. B. Emerce, D. Eroglu, “Effect of electrolyte-to-sulfur ratio in the cell on the Li-S battery performance,” J. Electrochem. Soc., 166(8), A1490–A1500, 2019.
    [45] S.-H. Chung, C.-H. Chang, A. Manthiram, “Progress on the critical parameters for lithium–sulfur batteries to be practically viable,” Adv. Funct. Mater., 28(28), 1801188, 2018.
    [46] Z. Han, S. Li, Y. Wu, C. Yu, S. Cheng, J. Xie, “Challenges and key parameters in exploring the cyclability limitation of practical lithium–sulfur batteries,” J. Mater. Chem. A, 9(43), 24215–24240, 2021.
    [47] H. Ye, M. Li, T. Liu, Y. Li, J. Lu, “Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries,” ACS Energy Lett., 5(7), 2234–2245, 2020.
    [48] Y. Jung, B. Kang, “Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li–S batteries,” Phys. Chem. Chem. Phys., 18(31), 21500–21507, 2016.
    [49] D. Su, D. Zhou, C. Wang, G. Wang, “Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives,” Adv. Funct. Mater., 28(38), 1800154, 2018.
    [50] J. Liu, H. Nara, T. Yokoshima, T. Momma, T. Osaka, “Li2S cathode modified with polyvinylpyrrolidone and mechanical milling with carbon,” J. Power Sources, 273, 1136–1141, 2015.
    [51] J. Guo, Z. Yang, Y. Yu, H. D. Abruña, L. A. Archer, “Lithium–sulfur battery cathode enabled by lithium–nitrile interaction,” J. Am. Chem. Soc., 135(2), 763–767, 2013.
    [52] M. Wu, Y. Cui, Y. Fu, “Li2S nanocrystals confined in free-standing carbon paper for high performance lithium–sulfur batteries,” ACS Appl. Mater. Interfaces, 7(38), 21479–21486, 2015.
    [53] Z. Yang, J. Guo, S. K. Das, Y. Yu, Z. Zhou, H. D. Abruña, L. A. Archer, “In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries,” J. Mater. Chem. A, 1(4), 1433–1440, 2013.
    [54] Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, Y. Cui, “High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries,” J. Am. Chem. Soc., 134(37), 15387–15394, 2012.
    [55] K. Han, J. Shen, C. M. Hayner, H. Ye, M. C. Kung, H. H. Kung, “Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries,” J. Power Sources, 251, 331–337, 2014.
    [56] Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, “Phosphorous pentasulfide as a novel additive for high‐performance lithium‐sulfur batteries,” Adv. Funct. Mater., 23(8), 1064–1069, 2013.
    [57] C. Zu, M. Klein, A. Manthiram, “Activated Li2S as a high-performance cathode for rechargeable lithium–sulfur batteries,” J. Phys. Chem. Lett., 5(22), 3986–3991, 2014.
    [58] Z. Xing, G. Tan, Y. Yuan, B. Wang, L. Ma, J. Xie, Z. Li, T. Wu, Y. Ren, R. Shahbazian-Yassa, J. Lu, X. Ji, Z. Chen, “Consolidating lithiothermic‐ready transition metals for Li2S‐based cathodes,” Adv. Mater., 32(31), 2002403, 2020.
    [59] J. He, Y. Chen, A. Manthiram, “Metal sulfide‐decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high‐loading Li2S batteries,” Adv. Energy Mater., 9(20), 1900584, 2019.
    [60] S.-H. Chung, A. Manthiram, “A Li2S‐TiS2‐electrolyte composite for stable Li2S‐based lithium–sulfur batteries,” Adv. Energy Mater., 9(30), 1901397, 2019.
    [61] A. Hayashi, S. Hama, T. Minami, M. Tatsumisago, “Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses,” Electrochem. Commun., 5(2), 111–114, 2003.
    [62] S. T. Kong, Ö. Gün, B. Koch, H. J. Deiseroth, H. Eckert, C. Reiner, “Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS‐NMR spectroscopy,” Chem. Eur. J., 16(17), 5138–5147, 2010.
    [63] K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, R. Kanno, “Crystal structure and phase transitions of the lithium ionic conductor Li3PS4,” Solid State Ion., 182(1), 53–58, 2011.
    [64] R. Mercier, J. P. Malugani, B. Fahys, G. Robert, J. Douglade, “Structure du tetrathiophosphate de lithium,” Acta Crystallogr. B, 38, 1887–1990, 1982.
    [65] F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, “New, highly ion‐conductive crystals precipitated from Li2S–P2S5 glasses,” Adv. Mater., 17(7), 918–921, 2005.
    [66] M. Calpa, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, “Preparation of sulfide solid electrolytes in the Li2S–P2S5 system by a liquid phase process,” Inorg. Chem. Front., 5(2), 501–508, 2018.
    [67] H. D. Lim, X. Yue, X. Xing, V. Petrova, M. Gonzalez, H. Liu, P. Liu, “Designing solution chemistries for the low-temperature synthesis of sulfide-based solid electrolytes,” J. Mater. Chem. A, 6(17), 7370–7374, 2018.
    [68] M. Tatsumisago, M. Nagao, A. Hayashi, “Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries,” J. Asian Ceram. Soc., 1(1), 17–25, 2013.
    [69] J. Lau, R. H. DeBlock, D. M. Butts, D. S. Ashby, C. S. Choi, B. S. Dunn, “Sulfide solid electrolytes for lithium battery applications,” Adv. Energy Mater., 8(27), 1800933, 2018.
    [70] M. Nagao, A. Hayashi, M. Tatsumisago, “Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte,” Electrochim. Acta, 56(17), 6055–6059, 2011.
    [71] B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin, X. Lu, H. Dou, A. K. Nanjundan, G. Yushin, X. Zhang, Y. Yamauchi, “Solid-state lithium–sulfur batteries: Advances, challenges and perspectives,” Mater. Today, 40, 114–131, 2020.
    [72] Z. Lin, Z. Liu, N. J. Dudney, C. Liang, “Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries,” ACS Nano, 7(3), 2829–2833, 2013.
    [73] M. Nagao, A. Hayashi, M. Tatsumisago, “Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery,” Electrochem. Commun., 22, 177–180, 2012.
    [74] Y.-T. Wang, C. McHale, X. Wang, C. K. Chang, Y. C. Chuang, W. Kaveevivitchai, O. Š. Miljanić, T.-H. Chen, “Cyclotetrabenzoin acetate: a macrocyclic porous molecular crystal for CO2 separations by pressure swing adsorption,” Angew. Chem. Int. Ed., 60(27), 14931–14937, 2021.
    [75] Y. Yuan, A. S. Teja, ” Quantification of specific interactions between CO2 and the carbonyl group in polymers via ATR-FTIR measurements,” J. of Supercritical Fluids, 56(2), 208–212, 2011.
    [76] M. A. Little, A. I. Cooper, “The chemistry of porous organic molecular materials,” Adv. Funct. Mater., 30(41), 1909842, 2020.
    [77] C. M. McHale, C. R. Stegemoller, M. I. Hashim, X. Wang, O. S. Miljanić, “Porosity and guest inclusion in cyclobenzoin esters,” Cryst. Growth Des., 19(2), 562–567, 2019.
    [78] J. Xu, D. Su, W. Zhang, W. Bao, G. Wang, “A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries,” J. Mater. Chem. A, 4(44), 17381–17393, 2016.
    [79] X. Yang, L. Zhang, F. Zhang, Y. Huang, Y. Chen, “Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium–sulfur batteries,” ACS Nano, 8(5), 5208–5215, 2014.
    [80] Y. Yu, W. Hu, I. Chou, L. Jiang, Y. Wan, Y. Li, Y. Xin, X. Wang, Geofluids 2021.
    [81] Z. A. Ghazi, L. Zhu, H. Wang, A. Naeem, A. M. Khattak, B. Liang, N. A. Khan, Z. Wei, L. Li, Z. Tang, “Efficient polysulfide chemisorption in covalent organic frameworks for high‐performance lithium‐sulfur batteries,” Adv. Energy Mater., 6(24), 1601250, 2016.
    [82] J. Yan, X. Liu, B. Li, “Capacity fade analysis of sulfur cathodes in lithium–sulfur batteries,” Adv. Sci., 3(12), 1600101, 2016.
    [83] W. G. Wang, X. Wang, L. Y. Tian, Y. L. Wang, S. H. Ye, “In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries,” J. Mater. Chem. A, 2(12), 4316–4323, 2014.
    [84] P. P. Wang, C. Y. Xu, W. D. Li, L. Wang, L. Zhen, “Low temperature electrochemical performance of β-LixV2O5 cathode for lithium-ion batteries,” Electrochim. Acta, 169, 440–446, 2015.
    [85] Y.-J. Yen, S.-H. Chung, “Lean-electrolyte lithium–sulfur electrochemical cells with high-loading carbon nanotube/nanofiber–polysulfide cathodes,” Chem. Commun., 57(16), 2009–2012, 2021.
    [86] S. B. Tang, M. O. Lai, L. Lu, “Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques,” Mater. Chem. Phys., 111(1), 149–153, 2008.
    [87] Y.-J. Yen, S.-H. Chung, “A Li2S-based catholyte/solid-state-electrolyte composite for electrochemically stable lithium–sulfur batteries,” ACS Appl. Mater. Interfaces, 13(49), 58712–58722, 2021.
    [88] O. Akhavan, M. Kalaee, Z. S. Alavi, S. M. A. Ghiasi, A. Esfandiar, “Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide,” Carbon, 50(8), 3015–3025, 2012.
    [89] B. Gurzęda, T. Buchwald, M. Nocuń, A. Bąkowicz, P. Krawczyk, “Graphene material preparation through thermal treatment of graphite oxide electrochemically synthesized in aqueous sulfuric acid,” RSC Adv., 7(32), 19904–19911, 2017.
    [90] Z. Yang, Y. Dai, S. Wang, H. Cheng, J. Yu, “In situ incorporation of a S, N doped carbon/sulfur composite for lithium sulfur batteries,” RSC Adv., 5(95), 78017–78025, 2015.
    [91] L. Tao, Y. Yang, H. Wang, Y. Zheng, H. Hao, W. Song, J. Shi., M. Huang, D. Mitlin, “Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms,” Energy Storage Mater., 27, 212–225, 2020.
    [92] Z. Wang, Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu, X. W. D. Lou, “Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide,” Nat. Commun., 5(1), 1–8, 2014.
    [93] M. I. Nandasiri, L. E. Camacho-Forero, A. M. Schwarz, V. Shutthanandan, S. Thevuthasan, P. B. Balbuena, K. T. Mueller, V. Murugesan, “In situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries,” Chem. Mater., 29, 4728–4737, 2017.
    [94] C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X.-Q. Yang, C. Wang, “A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries,” Proc. Natl. Acad. Sci. U.S.A., 117(26), 14712–14720, 2020.
    [95] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure & Appl. Chem., 57(4), 603–619, 1985.
    [96] S.-H. Chung, A. Manthiram, “Designing lithium-sulfur cells with practically necessary parameters,” Joule, 2(4), 710–724, 2018.
    [97] M. A. Pope, I. A. Aksay, ”Structural design of cathodes for Li‐S batteries,” Adv. Energy Mater., 5(16), 1500124, 2015.
    [98] X. Chen, T. Hou, K. A. Persson, Q. Zhang, “Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives,” Mater. Today, 22, 142–158, 2019.
    [99] X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, ”Nanostructured metal oxides and sulfides for lithium–sulfur batteries,” Adv. Mater., 29(20), 1601759, 2017.
    [100] S. Choi, I. Yoon, W. T. Nichols, D. Shin, “Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S-P2S5 solid electrolyte,” Ceram. Int., 44(7), 7450–7453, 2018.
    [101] G. H. Chang, Y. S. Oh, S. Kang, J. Y. Park, H. T. Lim, “Single-step prepared Li2S-P2S5-C composite cathode for high areal capacity all-solid-state lithium ion batteries,” Electrochim. Acta, 358, 136884, 2020.
    [102] M. Ghidiu, J. Ruhl, S. P. Culver, W. G. Zeier, “Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective,” J. Mater. Chem. A, 7(30), 17735–17753, 2019.
    [103] Ö. U. Kudu, T. Famprikis, B. Fleutot, M. D. Braida, T. Le Mercier, M. S. Islam, C. Masquelier, “A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S−P2S5 binary system,” J. Power Sources, 407, 31–43, 2018.
    [104] D. A. Ziolkowska, W. Arnold, T. Druffel, M. Sunkara, H. Wang, “Rapid and economic synthesis of a Li7PS6 solid electrolyte from a liquid approach,” ACS Appl. Mater. Interfaces, 11(6), 6015–6021, 2019.
    [105] H.-L. Wu, L. A. Huff, A. A. Gewirth, “In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries,” ACS Appl. Mater. Interfaces, 7(3), 1709–1719, 2015.
    [106] J. T. Yeon, J. Y. Jang, J. G. Han, J. Cho, K. T. Lee, N. S. Choi, “Raman spectroscopic and X-ray diffraction studies of sulfur composite electrodes during discharge and charge,” J. Electrochem. Soc., 159(8), A1308–A1314, 2012.
    [107] S. A. Khan, R. W. Hughes, P. A. Reynolds, “Raman spectroscopic determination of oxoanions in aqueous polysulfide electrolyte solutions,” Vib. Spectrosc., 56(2), 241–244, 2011.
    [108] J. S. Berg, A. Schwedt, A. C. Kreutzmann, M. M. Kuypers, J. Milucka, “Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp,” Appl. Environ. Microbiol., 80(2), 629–636, 2014.
    [109] A. Kato, H. Kowada, M. Deguchi, C. Hotehama, A. Hayashi, M. Tatsumisago, “XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries,” Solid State Ion., 322, 1–4, 2018.
    [110] S. Wenzel, D. A. Weber, T. Leichtweiss, M. R. Busche, J. Sann, J. Janek, “Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte,” Solid State Ion., 286, 24–33, 2016.
    [111] J. Liang, X. Li, Y. Zhao, L. V. Goncharova, G. Wang, K. R. Adair, C. Wang, R. Li, Y. Zhu, Y. Qian, L. Zhang, R. Yang, S. Lu, X. Sun, “In situ Li3PS4 solid‐state electrolyte protection layers for superior long‐life and high‐rate lithium‐metal anodes,” Adv. Mater., 30(45), 1804684, 2018.
    [112] X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, “A highly efficient polysulfide mediator for lithium–sulfur batteries,” Nat. Commun., 6(1), 1–8, 2015.
    [113] R. Grissa, V. Fernandez, N. Fairley, J. Hamon, N. Stephant, J. Rolland, R. Bouchet, M. Lecuyer, M. Deschamps, D. Guyomard, P. Moreau, “XPS and SEM-EDX study of electrolyte nature effect on Li electrode in lithium metal batteries,” ACS Appl. Energy Mater., 1(10), 5694–5702, 2018.
    [114] M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, “Exploiting XPS for the identification of sulfides and polysulfides,” RSC Adv., 5(93), 75953–75963, 2015.
    [115] S. Tresintsi, K. Simeonidis, N. Pliatsikas, G. Vourlias, P. Patsalas, M. Mitrakas, “The role of SO42− surface distribution in arsenic removal by iron oxy-hydroxides,” J. Solid State Chem., 213, 145–151, 2014.
    [116] Y. Wang, Z. Liu, X. Zhu, Y. Tang, F. Huang, “Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method,” J. Power Sources, 224, 225–229, 2013.
    [117] Y. Li, W. Arnold, A. Thapa, J. B. Jasinski, G. Sumanasekera, M. Sunkara, T. Druffel, H. Wang, “Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries,” ACS Appl. Mater. Interfaces, 12(38), 42653–42659, 2020.
    [118] R. Xu, I. Belharouak, J. C. Li, X. Zhang, I. Bloom, J. Bareño, “Role of polysulfides in self‐healing lithium–sulfur batteries,” Adv. Energy Mater., 3(7), 833–838, 2013.
    [119] W. Zhang, T. Leichtweiß, S. P. Culver, R. Koerver, D. Das, D. A. Weber, W. G. Zeier, J. Janek, “The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries,” ACS Appl. Mater. Interfaces, 9(41), 35888–35896, 2017.
    [120] K. Yoon, J. J. Kim, W. M. Seong, M. H. Lee, K. Kang, “Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery,” Sci. Rep., 8(1), 1–7, 2018.
    [121] T. Yamada, S. Ito, R. Omoda, T. Watanabe, Y. Aihara, M. Agostini, U. Ulissi, J. Hassoun, B. Scrosati, “All solid-state lithium–sulfur battery using a glass-type P2S5–Li2S electrolyte: benefits on anode kinetics,” J. Electrochem. Soc., 162(4), A646–A651, 2015.
    [122] R. Garcia-Mendez, F. Mizuno, R. Zhang, T. S. Arthur, J. Sakamoto, “Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior,” Electrochim. Acta, 237, 144–151, 2017.

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE