簡易檢索 / 詳目顯示

研究生: 曾啟銓
Tzeng, Chi-chuan
論文名稱: 主動脈側接人工血管流場之數值探討
Numerical Investigation of End-to-Side Anastomosis Flow in Aorta
指導教授: 陸鵬舉
Lu, Pong-jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 計算流體力學脈動流壁面剪應力
外文關鍵詞: Wall Shear Stress, CFD, Pulsatile Flow
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反動脈式(Counter-Pulsatile)循環輔助器中,不論是以主動脈內(Intra-Aortic)或主動脈外(Extra-Aortic)泵浦作動其流場特徵都非常不一樣。本文目的在研究經由與血管彈性相符(Compliance-Matching)的T型歧管當與主動脈之側主動脈血泵(Para-Aortic Blood Pump, PABP)橋接並作動所形成的流場現象,並希望藉由這種設計來減少因側接主動脈形成之複雜紊流所造成的血液及血管併發症。本研究使用計算流體力學(Computational Fluid Dynamics)商業軟體FLUENT及使用者定義(User-Defined)動態網格系統做流固藕合(Fluid-Structure Interaction)計算,將主動脈內腔的彈性結構與流體方程式共同結合以進行流固藕合數值運算。此外,也將動物實驗中量測的脈動流流量及壓力作為計算邊界條件,並進行數值模擬驗證。本研究利用Lagrangian顆粒追蹤方式求得顆粒在流體中所經歷的非常態(Unsteady)雷諾剪應力(Reynolds Stress)並量化血球受剪應力破壞之溶血指數(Hemolysis Index)。從計算流體力學分析結果得知:1)在脈動流場中歧管內壁面並沒有持續性的停滯區存在;2)在血泵射血時所造成的高壁面剪應力(High Wall Shear Stress)區被良好的包覆在T型歧管內;3)在T型歧管的轉角以及與血管彈性不相符(Compliance Mismatching)的交接端處,都會形成高壁面剪應力梯度(Wall Shear Stress Gradient);4)因剪應力而造成的血球破壞指數值皆落在無臨床症狀的範圍。從研究結果可知側主動脈血泵能抵抗血栓形成,同時與血管彈性相符的設計可以有效地減少植入後所引發的血管病變。

    Counter-pulsatile circulation support realized by intra- or extra-aortic pumping means has very different flow characteristics. The objective of this research is to study the detail flow structure of a conduit-mediated para-aortic blood pump (PABP) which adopts a specially designed compliance-matching T-shaped conduit. This configuration is expected to mitigate the blood and vascular complications that might arise in this complex, turbulent end-to-side anastomotic flow. A fluid-structure interaction computational fluid dynamics (CFD) simulation was performed using a commercially available FLUENT code and a user-defined dynamic grid system. The aortic lumen was modeled flexible and the structural equation was solved together with the flow equations. Parallel animal studies were also conducted in which in-vivo pulsatile flowrate and pressure measurements were obtained. These in-vivo data were used for simulation validation and for numerical boundary condition specification. Unsteady, turbulent Reynolds stresses were evaluated for selected Lagrangian-tracked particles and blood cell damage was quantified using an empirical stress-time hemolysis index. The CFD analysis reveals that 1) there exists nowhere in the pulsatile juncture flow that is constantly stasis, 2) high wall shear stress occurs in the pump ejection phase and this high shear stress zone is well contained within the conduit, 3) wall shear stress gradient is found high around the salient corner of the conduit T-juncture and the two graft-aortic edges where compliance mismatching occurs, and 4) the stress-time blood trauma index is low in the subclinic range. It is suggested by the present analysis that the conduit-mediated PABP is thrombo-resistant and the vascular complication caused by the implant can be minimized by the compliance-matching design.

    中文摘要 I 英文摘要 III 致謝 IV 目錄 V 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 4 1-3 研究動機和目的 8 第二章 邊界條件 10 2-1 邊界條件設定 10 2-2 物理條件 11 2-3 動脈模型 11 2-4 動態網格運算流程 12 第三章 血液動力指數 14 3-1 雷諾剪應力 14 3-2 溶血指數 15 2-3 震盪剪應力指數 17 第四章 結果與討論 19 4-1 程式驗證 19 4-1-1 T型歧管流場 19 4-1-2 動態網格程式驗證 19 4-1-3 震盪管道內的流場 20 4-1-4 與動物實驗的比較 21 4-2 結果討論 22 4-2-1 T型歧管內的低速區 22 4-2-2 T型歧管內高壁面剪應力之分佈 24 4-2-3 T型歧管內之震盪剪應力 24 4-2-4 T型歧管內剪應力隨時間的變化 25 4-2-5 T型歧管內壁面剪應力梯度變化 26 4-2-6 T型歧管壁面壓力變化 28 4-2-7 T型歧管內之雷諾剪應力 29 4-2-9 動脈模型之數值運算結果 30 第五章 結論與未來工作 32 5-1 結論 32 5-2 未來工作 33 參考文獻 35 圖 38 自述 90

    [1] Stevenson, L. W. and Kormos, R. L., “Mechanical cardiac support 2000: current applications and future trial design,” Journal of the American College of Cardiology, Vol. 37, No. 1, 2001, pp. 340-70.
    [2] Moulopoulos, S. D., Topaz, S., Kolff, W., “Diastolic balloon pumping in the aorta: A mechanical assistance to the failing circulation,” American Heart Journal, Vol.63, 1962, pp. 69-675.
    [3] Kantrowitz, A., Tjonneland, S., Freed, P. S., Phillips, S. J., Butner, A. N., Sherman, J. L., “Intial clinical experience with intra-aortic balloon pumping in cardiogenic shock,” Journal of the American Medical Association, Vol. 203, 1968, pp. 135-140.
    [4] Weinbaum, S., and Chien, S., “Lipid transport aspects of atherogenesis” ASME Journal of Biomechanical Engineering, Vol. 115, 1993, pp. 602-610.
    [5] Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C., “Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis,” Proceedings of the Royal Society of London B, Vol. 177, 1971, pp. 109-159.
    [6] Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation,” Arteriosclerosis, Vol. 5, No 3, 1985, pp. 293-302.
    [7] Wootton, D. M., and Ku, D. N., “Fluid mechanics of vascular systems, diseases, and thrombosis,” Annual Review of Biomedical Engineering, Vol. 01, 1999, pp. 299-329.
    [8] Schoephoerster, R. T., Oynes, F., Nunez, G., Kapadvanjwala, M., and Dewanjee, M. K., “Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces,” Arteriosclerosis and Thrombosis, Vol. 13, No. 12, 1993, pp. 1806-1813.
    [9] 馬光輝和蘇志國,“新型高分子材料”,曉園出版社,2006。
    [10] Texon, M., “A hemodynamic concept of atherosclerosis, with particular reference to coronary occlusion,” Archives of Internal Medicine, Vol. 99, 1957, pp. 418-427.
    [11] Fry, D. L., “Acute vascular endothelial changes associated with increased blood velocity gradients,” Circulation Research, Vol. XXII, 1968, pp. 165-197.
    [12] Caro, C. G., Fitz-Gerald, J. M. and Schroter, R. C., “Arterial wall shear and distribution of early atheroma in man,” Nature, Vol. 223, 1969, pp. 1159-1161.
    [13] Ku, D. N., and Giddens, D. P., “Pulsatile flow in a model carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, Vol. 3, 1983, pp. 31-39.
    [14] Stary, H. C , Blankenhorn, D. H., Chandler, A. B., et al., "A definition of the intima of human arteries and of its atherosclerosis-prone regions," Arteriosclerosis and Thrombosis, Vol. 11, 1992, pp. 120-134.
    [15] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” ASME Journal of Biomechanical Engineering, Vol. 114, 1992, pp. 274-282.
    [16] Berger, S. A. and Jou, L-D., “Flows in stenotic vessels” Annual Review of Fluid Mechanics, Vol. 32, 2000, pp. 347-382.
    [17] Helmlinger, G., Geiger, R. V., Schreck, S., and Nerem, R. M., “Effects of pulsatile flow on cultured vascular endothelial cell morphology,” ASME Journal of Biomechanical Engineering, Vol. 113, 1991, pp. 123-131.
    [18] Giddens, D. P., Zarins, C. K., and Glagov, S., "Response of arteries to near-wall fluid dynamic behavior," Applied Mechanics Reviews, Vol. 43, 1990, pp.S98-S102.
    [19] Kamiya, A., and Togawa, T., "Adaptive regulation of wall shear stress
    to flow changes in the canine carotid artery," American Journal of Physiology, Vol. 239, 1980, pp. H14-H21.
    [20] White, S. S., Zarins, C. K., Giddens, D. P., et al. “Hemodynamic patterens in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length,” ASME Journal of Biomechanical Engineering, Vol. 115, 1993, pp. 104-111.
    [21] Liu, J. S., Lu, P. C., and Chu, S. H., “Turbulence characteristics downstream of bileaflet aortic valve prostheses,” ASME Journal of Biomechanical Engineering, Vol.122, No.2, 2000, pp. 118-124.
    [22] Olufsen, M. S., “Structured tree outflow condition for blood flow in larger systemic arteries,” American Journal of Physiology, Vol. 276, 1999, pp. H257-H268.
    [23] Sutera, S. P. and Mehrjardi, M. H., “ Deformation and fragmentaion
    of human red blood cells in turbulent shear flow,” Biophysical
    Journal, Vol. 15, 1975, pp. 1-11.
    [24] Grigioni, M., Daniele, C., Morbiducci, U., D'Avenio, G., Benedetto, G. D., and Barbaro, V., “The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies,” Artificial Organs, Vol. 28(5), 2004, pp.467-475.
    [25] Williams, A. R., “ Release of Serotonin from Human Platelets by Acoustic Microstreaming.” Journal of the Acoustical Society of America, Vol. 56, No. 5, 1974, pp. 1640-1643.
    [26] Yano, T., Sekine, K., Mitoh, A., et al., “An estimation Method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis,” Artificial Organs, Vol. 27(10), 2003, pp. 920-925.
    [27] Arora, D., Behr, M., and Pasquali, M., “A tensor-based measure for estimating blood damage,” Artificial Organs, Vol. 28(11), 2004, pp. 1002-1015.
    [28] Goubergrits, L., and Affeld, K., “Numerical estimation of blood damage in artificial organs,” Artificial Organs, Vol. 28, No. 5, 2004, pp. 499-507.
    [29] Zarins, C. K., Giddens, D. P., Bharadvaj, B. K., Sottiurai, V. S., Mabon, R. F., and Glagov, S., “Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress,” Circulation Research, Vol. 53, 1983, pp. 502-514.
    [30] He, X. and Ku, D. N., “Flow in T-bifurcations: effect of the sharpness of the flow divider,” Biorheology, Vol. 32, No. 4, 1995, pp. 447-458.
    [31] Clamen, M. and Minton, P., “An experimental investigation of flow in an oscillating pipe,” Journal of Fluid Mechanics, Vol. 81, part 3, 1977, pp. 421-431.
    [32] Paul, R., Apel, J., Klaus, S., Schgner, F., Schwindke, P., and Reul, H., “Shear stress related blood damage in laminar couette flow,” Artificial Organs, Vol. 27(6) , 2003, pp. 517-529.
    [33] Hsu, U. K., “Dynamic simulation of tilting-disc mechanical heart valve in pulsatile flow,” Ph.D. Dissertation, Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, 2006.
    [34] Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., Jr., and Gimbrone, M. A., Jr., “Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 83, 1986, pp. 2114-2117.
    [35] Heart Failure Online, http://www.heartfailure.org/eng_site/whats_new_lvad.asp

    下載圖示 校內:立即公開
    校外:2008-08-27公開
    QR CODE