簡易檢索 / 詳目顯示

研究生: 林宛萱
Lin, Wan-Hsuan
論文名稱: 表面聲波感測器的分析與模擬
An analysis on surface acoustic wave sensors and its simulation
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: Surface acoustic wavesSensorsNumerical integrationElastodynamics
外文關鍵詞: Surface acoustic waves, Sensors, Numerical integration, Elastodynamics
相關次數: 點閱:65下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文藉由分析彈性動力問題與其應用之數值方法,建構模組以模擬表面聲波感測器來處理應力與位移之間的關聯,達到觀察敏感度之於數種操縱變因的情況。首先由彈性動力學的基本認知推導出Navier's Equation。針對Lamb's Problem中的一種特例,即Navier's Equation的特定邊界問題,藉此來求解垂直方向連續受力的彈性波表面位移。以C語言和Matlab作為實作工具,使用數值方法模型化該邊界問題,視覺化其模擬結果後繪製可觀察出波現象的表面位移之於時間的關係圖,與敏感度之於某種控制變因的趨勢圖,並藉由曲率計算出其控制變因相對於整組核對實驗結果的敏感度。

    The object of this thesis is to observe the distinct situations of what sensitivities present varied trends with several control factors, through an analysis on simulation models about pressure surface acoustic wave sensors.

    At first, having a basic knowledge of elastodynamics in linear elasticity, then making Navier's Equation be derived from some mechanical principles. Afterwards, for the specified boundary condition problem of Navier's equation, we adopt the known surface displacement function to compute elastic wave's surface displacement with continuously vertical stress. Using C and Matlab as applied materials, we build the simulation models for this boundary condition problem, and visualizing the simulation results to diagram the relation of displacement to time, in order to observe the wave behaviours.
    The other point of whole thesis, is to determine the sensitivities to different factors through the curvature of their sensitivity curves in the tendencies' diagrams over the control experiments.

    Table of Contents Cover i Abstract (Chinese) ii Abstract (English) iii Acknowledgments iv Table of Contents v List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1 Wave Propagation and Seismology . . . . . . . . . . . . . . . . . . . . 1 1.2 Piezoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Surface acoustic wave sensors . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Summary of whole work . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 2. Elastodynamics in linear elasticity 14 2.1 Elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Lamb’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Deduction upon the Surface Displacement with multiple impulse source 24 Chapter 3. Simulations upon sensitivity along the change of mechanical properties 27 3.1 Discretization on time variable . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Institution of every designed element about wave propagation . . . . . . 29 3.3 Normalization of measurement system . . . . . . . . . . . . . . . . . . 36 3.4 An example for assigned mechanical properties . . . . . . . . . . . . . 38 v 3.5 An enhancement of numerical integration over surface displacement function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Sensitivity experiments with different Young’s modului . . . . . . . . . 46 3.7 Sensitivity experiments with different external stresses . . . . . . . . . . 51 Chapter 4. Simulations upon sensitivity with one-dimensional generators and sensors 57 4.1 Formulization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Established Notation and Normalization . . . . . . . . . . . . . . . . . 61 4.4 An example for Assigned Mechanical Properties . . . . . . . . . . . . . 63 4.5 Experiments with differently dimensional generators and receivers . . . 66 4.6 Sensitivity experiments with different Young’s modulus and external stress respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Chapter 5. Discussions and conclusions 72 References 74

    References
    [1] Hamid R. Hamidzadeh, Liming Dai, Reza N. Jazar, Wave Propagation in Solid
    and Porous Half-Space Media, Springer New York, 2014.
    [2] T. Yanovskaya, A.L. Levshin, E.N. Its, A.V. Lander, B.G. Bukchin, M.P.
    Barmin, L.I. Ratnikova, Seismic Surface Waves in a Laterally Inhomogeneous
    Earth, V.I. Keilis-Borok, Springer Netherlands, 2012.
    [3] Keith Edward Bullen, K. E. Bullen, Bruce A. Bolt, An Introduction to the Theory
    of Seismology, Cambridge University Press, 1985.
    [4] J. F. Bell, Mechanics of Solids: Volume I: The Experimental Foundations of
    Solid Mechanics, C. Truesdell, Springer Berlin Heidelberg, 1984.
    [5] Jiashi Yang, An Introduction to the Theory of Piezoelectricity, Springer US,
    2006.
    [6] Bernard Jaffe, Piezoelectric Ceramics, Elsevier, 2012.
    [7] Gerard Parr, Philip Morrow, Sensor Systems and Software: Second International
    ICST Conference, S-Cube 2010, Miami, FL, December 13-15, 2010, Revised
    Selected Papers, Springer, 2011.
    [8] Clemens C. W. Ruppel, Tor A. Fjeldly, Advances in Surface Acoustic Wave
    Technology, Systems and Applications, World Scientific, 2001.
    [9] Eringen, A.C. and Şuhubi, E.S., Elastodynamics: Linear theory, Academic
    Press, 1975.
    [10] American Society for Testing and Materials, Standard test method for Young’s
    modulus, tangent modulus, and chord modulus, Philadelphia : West Conshohocken,
    2004.

    下載圖示 校內:2020-05-30公開
    校外:2020-05-30公開
    QR CODE