| 研究生: |
何思妤 Ho, Sih-Yu |
|---|---|
| 論文名稱: |
梁腹開孔鋼結構梁柱接頭之結構耐震與火害行為 Seismic and Fire Behaviors of Steel Beam-to-column Connections with Beam Web Openings |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 鋼梁柱接頭 、減弱式接頭 、梁腹板開孔 、耐震性能 、火害行為 |
| 外文關鍵詞: | steel beam-to-column connections, web openings, seismic performance, fire behavior |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對梁腹板開孔(Web Opening)減弱式鋼結構梁柱接頭來進行耐震試驗,並利用有限元素分析探討其耐震與火害之行為。首先進行一組實尺寸既有之腹板雙長條型開孔接頭進行耐震試驗,探討其耐震能力,後經有限元分析驗證,此種改良式開孔設計接頭於試驗及模擬皆能有效將塑鉸遠離柱面,且變形達規範要求 4%弧度時之柱面抗彎矩強度超過梁斷面塑性彎矩 0.8 倍。單純藉由有限元素分析探討梁腹板有無開孔接頭在不同邊界條下受火害後之行為能力,火害分析主要分為三種型式,第一種為單純受火行為,第二種為受震後受火後行為及第三種為受火冷卻後受震行為。受震加載是根據梁端位移來進行控制,受火加載是根據 CNS 12514 規範之升溫曲線加溫於接頭梁下翼板處。單純受火情況下,分為兩種邊界條件,為防止梁柱接頭發生側邊偏轉而設置側撐對於僅受火並不會造成太大的挫屈現象;若無側撐且梁端 Y 向為自由端,有開孔接頭會較快發生挫屈現象,但挫屈沒有位於柱面附近翼板處,無開孔接頭雖較慢發生挫屈現象,但挫屈位於翼板靠近柱面處。受震後受火下,因有設置側撐,因此接頭變形對於梁端加載具有較大影響,有開孔接頭於開孔附近具有較大挫屈,無開孔接頭則是於靠近柱面處發生挫屈現象。受火冷卻後受震下,模擬結果為接頭承受火災後回歸常溫,再進行加載後,有開孔接頭相對於無開孔接頭仍具有將塑鉸遠離柱面的能力。本研究無採用流體力學模組,不考慮熱輻射現象,也無考慮施加使用性載重,僅針對鋼梁柱接頭進行表面加溫與梁端施加位移控制,藉以探討接頭單純受溫度與位移的變化。
In this study, having seismic test by steel beam-to-column connections with web
openings and discuss the seismic and fire behavior of steel beam-to-column connections by finite element methods (FEM). First, conducting seismic test by a realsize of beam-to-column connections with web double-strip openings and explore its seismic capacity. Then, this kind of improved connections can effectively keep the plastic hinge away from the column surface in the test and simulation and the deformation meets specification requirements of the column bending moment strength exceeds 0.8 times of the beam plastic bending moment at 4% drift angel. The finite element analysis is used to explore the behavior ability of the beam web with or without opening connections after being fired under different boundary conditions. The fire analysis is mainly divided into three types. The first type is pure fire behavior, and the second type is the behavior after being exposed to fire after an earthquake, and the third is the behavior of being exposed to earthquake after being cooled by fire. The seismic loading is controlled according to the beam end
displacement, and the fire loading is heated at the lower flange of the beam according to the heating curve of the CNS 12514 standard. In the case of simple fire, there are two kinds of boundary conditions. This study did not use fluid mechanics modules, did not consider the phenomenon of heat radiation, and did not consider the application of usable loads. Only giving the surface heating of the steel beam-column connections and the displacement control of the beam ends were used to explore the changes of the connections by temperature and displacement.
[1] A.P. Boresi, R.J. Schemidit, O.M. Sidebottom, 1993, Advanced Mechanics of Materials.
[2] ANSYS, 2007, ANSYS Contact Technology Guide,SAS.
[3] AISC, 2010, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago.
[4] ASTM E119, 2018, Standard test methods for fire tests of building construction and materials, American Society for Testing and Materials.
[5] EI-Tawil, S., Vidarsson, E., Mikesell, T., and Kunnath, S. K., 1999, Inelastic behavior and design of steel panel zones, 183-193.
[6] EUROCODE 3, 2005, Design of steel structures-Part 1.2:General rules-Structural Fire Design.
[7] Faramarz Rahiminia, Hisashi Namba, 2013, Joint panel in steel moment connections, Part 1: Experimental tests results, 272-283.
[8] ISO 834-1, 1999, Fier resistance tests-elements of building construction, Part 1, General requirements, International Standard ISO 834, Geneva.
[9] Machel Morrison, Doug Schweizer, Tasnim Hassan, 2015, An innovative seismic performance enhancement technique for steel building moment resisting connections, 34-46.
[10] S.-H. Chao, K. Khandelwal, S. EI-Tawil, 2006, Ductile Web Fracture Initiation in Steel Shear Links, Journal of Structural Engineering, 132:1192-1200.
[11] The Steel Construction Institute (SCI), 2011, Design of Composite Beams with Large web openings, Berkshire UK.
[12] X. Zhang, S. Zheng, X. Zhao, 2019, Seismic performance of steel beam-to-column moment connections with different structural forms, Journal of Constructional Steel Research.
[13] Yujie Yu, Lifeng Lan, Faxing Ding, Liping Wang, 2019, Mechanical properties of hot-rolled and cold-formed steels after exposure to elevated temperature: A review, 360-376.
[14] 毛昶人,鋼結構梁柱接頭區受火害行為研究,成功大學土木研究所博士論文,2009。
[15] 內政部建築研究所,耐火剛螺栓接頭性能研究,2006。
[16] 內政部建築研究所,鋼結構梁柱組合火害行為數值分析與驗證研究,2008。
[17] 內政部建築研究所,火災熱傳遞與鋼結構安全性能評估之分析研究, 2009。
[18] 內政部建築研究所,鋼結構耐震韌性梁柱接頭之耐火性能研究(1/3), 2010。
[19] 內政部建築研究所,鋼結構耐震韌性梁柱接頭之耐火性能研究(2/3), 2011。
[20] 內政部營建署,鋼構造建築物鋼結構設計技術規範,2016。
[21] 王亭懿,梁腹開孔鋼梁柱接頭耐震性能設計與火害行為模擬,成功大學土木研究所碩士論文,2020。
[22] 林子賓,高溫下螺栓孔支承強度之研究,成功大學土木研究所碩士論文,2006。
[23] 林誠興,建築物火災行為與結構安全之性能模擬分析,2006。
[24] 洪政鴻,高強度鋼構造梁柱接頭於火害中之行為,交通大學土木研究所碩士論文,2018。
[25] 國立交通大學,鋼構造建築物防火設計技術參考手冊之研究,內政部建築研究所委託研究報告,2018。
[26] 經濟部標準檢驗局,中華民國國家標準 CNS12514-1,建築物構造構件耐火試驗法-第1部:一般要求事項,2014。
[27] 葉慶宇,剪力板螺栓接合設計與鋼梁柱接頭耐震試驗分析研究,成功大學土木研究所碩士論文,2019。
[28] 蔡宗翰,高結構彎矩接頭受火害之行為研究,成功大學土木研究所碩士論文,2006。