| 研究生: |
劉佳勳 Liu, Chia-Hsun |
|---|---|
| 論文名稱: |
以化學過氧沉澱(COP)技術回收含硼酸廢液研究 Boron Recovery from Boric Acid Wastewater by Chemical Oxo-Precipitation (COP) Technology |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 化學過氧沉澱 、流體化床均質顆粒化 、除硼 、過硼酸 |
| 外文關鍵詞: | boron removal, precipitation, Fluidized-bed Granulation, Raman, peroxoborate |
| 相關次數: | 點閱:107 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硼酸已於民生工業中扮演著不可或缺的角色,近年來又隨著高科技產業製程上的需求及化學儲氫材料的使用,產生的含硼廢水需被審慎對待。本研究即針對含硼廢水分別以鈣鹽及鋇鹽做為沉澱劑、雙氧水做為過氧劑,嘗試利用新的化學過氧沉澱(COP)技術取代傳統化學沉澱(CP),以提升除硼效率。接著配合COP,引進流體化床均質顆粒化(FBHG)技術,以產生過硼酸鈣或過硼酸鋇均質顆粒,達到同時改善水質並資源化有價過硼酸鹽的效果。
於COP批次測試系統中,乃針對1000 mg-B/L分別探討pH、Me/B、H2O2/B等變因,研究結果發現相較於金屬離子濃度,H2O2濃度對除硼效果有較顯著的影響,當H2O2/B=Me/B=1且pH在10~11間時有最佳除硼效果。Ca鹽系統中硼的去除率大於85%,可使硼濃度降至129 mg-B/L;而Ba鹽系統中硼的去除率更大於95%,可降至38 mg-B/L。
於FBHG連續測試系統中,當進料為300 mg-B/L時,實驗結果顯示鈣鹽及鋇鹽系統皆可長出均質顆粒,且Ba鹽系統的除硼效果優於Ca鹽系統,與COP批次測試結果吻合。Ba鹽系統可在上流速度為20 m/hr、H2O2/B=1.5,pHe=9的條件下達到60 %的結晶率,反應器之槽體負荷約落於1500~1800 g-B/hr•m2間,且在調整pH值並經過沉澱槽後,可再提升去除率最高至85 %。
最後,在產品的鑑定方面,FBHG產生的顆粒經過Raman鑑定其含有O-O官能基,然而XRD顯示無論是COP汙泥或FBHG顆粒皆無結晶相。若將汙泥鍛燒至700 °C,則可用XRD及Raman證明高溫後的產品為偏硼酸鈣及偏硼酸鋇。且由TGA及DSC可了解產品之熱性質,包含水的蒸發、氧氣的釋出等變化,最後綜合以上分析結果可推測顆粒的化學式應為BaB2O4(OH)4及Ca(BO3)2 • nH2O。
This study investigated a chemical oxo-preceipitation (COP) process for the treatment of the synthetic boric acid wastewater. COP combined the oxidant treatment and chemical precipitation using different metal salts (CaCl2 and BaCl2) for boron removal. Metal borate which was of high purity and single compound could be recovered by fluidized-bed homogeneuous Granulation (FBHG) process without adding seed materials.
In COP stage, the molar ratio of metal to boron (Me/B), H2O2 to boron (H2O2/B) and pH were the primary variables for optimizing the treatment of 1000 mg-B/L synthetic boric acid solution. At pH around 10-11, the boric acid concentration could be substantially redued to 129 and 38 mg-B/L using CaCl2 and BaCl2 as precipitants, respectively, through the COP conditions of H2O2/B=1 and Me/B=1. Besides, H2O2 dosage affected the COP efficiency on boron removal more than precipitant did. In FBHG stage, the optimal parameters (U=20 m/hr、H2O2/B=1.5、Ba/B=2、pHe=9) could successfully recover the spherical particles of barium peroxoborate. For a feed level of 300 mg-B/L, 60% of crystallization ratio and 85% of removal efficiency were obtained at pH 10.75.
The particles from FBHG were characterized by SEM, XRD, Raman, and thermal analysis (TGA and DSC). The peroxide (O-O) functional group in particles could be monitored by Raman spectroscopy. The XRD patterns indicate that the FBHG products had a poor crystallinity; however, these borate compounds showed clear characteristic peaks that were well fitted with calcium metaborate (CaB2O4) and barium metaorate (BaB2O4) phase after 700 °C calcination. Water evaporation and oxygen released during the thermal decomposition could be observed through TGA and DSC analysis. According to the analytical results, the FBHG products using calcium ion and barium ion as precipitants were supposed to be calcium peroxoborate (Ca(BO3)2 • nH2O) and barium peroxoborate (BaB2O4(OH)4), respectively.
1. Xu, Y. and J.-Q. Jiang, Technologies for boron removal. Industrial & Engineering Chemistry Research, 2008. 47(1): p. 16-24.
2. Parks, J.L. and M. Edwards, Boron in the Environment. Critical Reviews in Environmental Science and Technology, 2005. 35(2): p. 81-114.
3. Hilal, N., G.J. Kim, and C. Somerfield, Boron removal from saline water: A comprehensive review. Desalination, 2011. 273(1): p. 23-35.
4. Argust, P., Distribution of boron in the environment. Biological trace element research, 1998. 66(1): p. 131-143.
5. Morisada, S., et al., Adsorption removal of boron in aqueous solutions by amine-modified tannin gel. Water Res, 2011. 45(13): p. 4028-34.
6. Schubert, D., Borates in Industrial Use, in Group 13 Chemistry III, H. Roesky and D. Atwood, Editors. 2003, Springer Berlin Heidelberg. p. 1-40.
7. Kirk-Othmer, Boron Oxides, Boric Acid, and Borates., in Kirk-Othmer Encyclopedia of Chemical Technology2007, John Wiley & Sons, Inc.
8. Krauskopf, K., Geochemistry of micronutrients. Micronutrients in agriculture, 1972: p. 7-40.
9. Swaine, D.J. and C.A. Bureaux, The trace-element content of soils. 1955: Commonwealth Agricultural Bureaux.
10. Shin, E.J., W.S. Lyoo, and Y.H. Lee, Effect of boric acid treatment method on the characteristics of poly(vinyl alcohol)/iodine polarizing film. Journal of Applied Polymer Science, 2012. 123(2): p. 672-681.
11. Mohapatra, D., G. Chaudhury, and K. Park, Solvent extraction approach to recover boron from wastewater generated by the LCD manufacturing industry: Part 1. Minerals & Metallurgical Processing Journal, 2008. 25(4): p. 175-180.
12. 林孟儒, 以化學方法去除廢水中硼之研究, in 環境與安全工程系碩士班2010, 雲林科技大學.
13. 賴泓均, 奈米白金/金屬氧化物複合觸媒催化化學氫反應研究, in 化學研究所2006, 臺灣大學.
14. 王淑玲, 硼氫化鈉的儲氫系統研究, in 化學工程學系2008, 成功大學.
15. Warington, K., The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot, 1923. 37(1): p. 629-672.
16. Takano, J., K. Miwa, and T. Fujiwara, Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci, 2008. 13(8): p. 451-7.
17. Wolska, J. and M. Bryjak, Methods for boron removal from aqueous solutions — A review. Desalination, 2013. 310: p. 18-24.
18. Irawan, C., Y.-L. Kuo, and J.C. Liu, Treatment of boron-containing optoelectronic wastewater by precipitation process. Desalination, 2011. 280(1-3): p. 146-151.
19. Deary, M.E., M.C. Durrant, and D.M. Davies, A kinetic and theoretical study of the borate catalysed reactions of hydrogen peroxide: the role of dioxaborirane as the catalytic intermediate for a wide range of substrates. Org Biomol Chem, 2013. 11(2): p. 309-17.
20. Durrant, M.C., D.M. Davies, and M.E. Deary, Dioxaborirane: a highly reactive peroxide that is the likely intermediate in borate catalysed electrophilic reactions of hydrogen peroxide in alkaline aqueous solution. Org Biomol Chem, 2011. 9(20): p. 7249-54.
21. Adams, C.J. and I.E. Clark, On the nature of the peroxoborate ion in solution. Polyhedron, 1983. 2(7): p. 673-675.
22. Pizer, R. and C. Tihal, Peroxoborates. Interaction of boric acid and hydrogen peroxide in aqueous solution. Inorganic Chemistry, 1987. 26(21): p. 3639-3642.
23. Carrondo, M.A.A.F.d.C.T. and A.C. Skapski, Refinement of the X-ray crystal structure of the industrial bleaching agent disodium tetrahydroxo-di-[mu]-peroxo-diborate hexahydrate, Na2[B2(O2)2(OH)4].6H2O. Acta Crystallographica Section B, 1978. 34(12): p. 3551-3554.
24. Yilmaz, A.E., et al., Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean Journal of Chemical Engineering, 2012. 29(10): p. 1382-1387.
25. Remy, P., et al., Removal of boron from wastewater by precipitation of a sparingly soluble salt. Environmental Progress, 2005. 24(1): p. 105-110.
26. Yoshikawa, E., A. Sasaki, and M. Endo, Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia. J Hazard Mater, 2012. 237-238: p. 277-82.
27. Li, X., et al., Efficient removal of boron acid by N-methyl-D-glucamine functionalized silica-polyallylamine composites and its adsorption mechanism. J Colloid Interface Sci, 2011. 361(1): p. 232-7.
28. Bıçak, N., et al., Crosslinked polymer gels for boron extraction derived from N-glucidol-N-methyl-2-hydroxypropyl methacrylate. Macromolecular Chemistry and Physics, 2000. 201(5): p. 577-584.
29. Senkal, B.F. and N. Bicak, Polymer supported iminodipropylene glycol functions for removal of boron. Reactive and Functional Polymers, 2003. 55(1): p. 27-33.
30. de la Fuente García-Soto, M.M. and E. Muñoz Camacho, Boron removal by means of adsorption processes with magnesium oxide — Modelization and mechanism. Desalination, 2009. 249(2): p. 626-634.
31. Kıpçak, İ. and M. Özdemir, Removal of boron from aqueous solution using calcined magnesite tailing. Chemical Engineering Journal, 2012. 189: p. 68-74.
32. Irawan, C., J.C. Liu, and C.-C. Wu, Removal of boron using aluminum-based water treatment residuals (Al-WTRs). Desalination, 2011. 276(1-3): p. 322-327.
33. Magara, Y., et al., Development of boron reduction system for sea water desalination. Desalination, 1998. 118(1): p. 25-33.
34. Hasson, D., et al., Scaling propensity of seawater in RO boron removal processes. Journal of Membrane Science, 2011. 384(1): p. 198-204.
35. Güler, E., et al., A comparative study for boron removal from seawater by two types of polyamide thin film composite SWRO membranes. Desalination, 2011. 273(1): p. 81-84.
36. Jiang, J.-Q., et al., Laboratory study of electro-coagulation–flotation for water treatment. Water Research, 2002. 36(16): p. 4064-4078.
37. Jiang, J., et al., Mechanisms of Boron Removal with Electrocoagulation. Environmental Chemistry, 2006. 3(5): p. 350-354.
38. Bektaş, N., et al., Removal of boron by electrocoagulation. Environmental Chemistry Letters, 2004. 2(2): p. 51-54.
39. Yilmaz, A.E., R. Boncukcuoglu, and M.M. Kocakerim, A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution. J Hazard Mater, 2007. 149(2): p. 475-81.
40. van Lier, R., C. Buisman, and A. Giesen, Crystalactor® technology and its applications in the mining and metallurgical industry, 2005, Paques B.V.
41. 陳政澤, 流體化床結晶反應槽回收廢水中重金屬鎘之研究, in 環境工程學系1995, 中央大學.
42. Ohlinger, K.N., T.M. Young, and E.D. Schroeder, Postdigestion struvite precipitation using a fluidized bed reactor. Journal of Environmental Engineering, 2000. 126(4): p. 361-368.
43. 張華強, 以流體化床反應器開發均相成核與結晶之新穎除磷技術, in Chemical Engineering 2012, National Chrng Kung University.
44. Lan, W.-S., Effect of hydrogen peroxide on the treatment of high boron concentration wastewater by Chemical pricipitation method, in Chemical engineering2012, National Cheng-Kung Univissity.
45. UNIS, M.M.A., Peroxide Reactions of Environmental Relevance in Aqueous Solution, in Applied Sciences2010, University of Northumbria
46. Stumm, W. and J.J. Morgan, Aquatic Chemistry, ed. 3th. 1996, New York: Wiley.
47. 張鈞期, 不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究 in Chemical Engineering2009, National Cheng Kung University.
48. Liu, Y. and J.-H. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Research, 2002. 36(7): p. 1653-1665.
49. Chryssikos, G.D., et al., A classification of metaborate crystals based on Raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991. 47(8): p. 1117-1126.
50. Nagaishi, T., et al., Thermal decomposition of magnesium peroxoborate. Journal of Thermal Analysis and Calorimetry, 1986. 31(3): p. 523-529.
51. GuccnNnnrtr, S., Y.-H. Cn, and L.A.K. vAN Gnoos, Muscovite dehydroxylation: High-temperature studies. American Mineralogist, 1987. 72: p. 537-550.