簡易檢索 / 詳目顯示

研究生: 陳文智
Chen, Wen-Chih
論文名稱: 應用資訊擴散技術加速新產品開發
Practical Information Diffusion Techniques to Accelerate New Product Pilot Runs
指導教授: 利德江
Li, Der-Chiang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 42
中文關鍵詞: 整體趨勢擴散技術小樣本學習資訊擴散雜訊因子多元迴歸
外文關鍵詞: mega-trend-diffusion (MTD) method, small dataset, information diffusion, noise disturbance method, multiple regression
相關次數: 點閱:150下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在越來越嚴苛的全球化競爭壓力下,產品生命週期變得越來越短。因此,如何運用試產階段所得到的稀少資訊,於新產品開發階段建立穩定的知識模式,以縮短研發週期、快速導入量產,來縮短產品上市時程,在近年來已是重要的議題。機器學習演算法被廣泛應用於這樣的課題,然而訓練樣本的數量始終為決定其資訊獲取能力的關鍵因素。本研究中,僅以少數幾筆資料透過整體趨勢擴散技術進行屬性值域範圍之推估,然後根據實際的工程經驗,於模型中加入轉換函數及雜訊因子來穩健從多元迴歸中篩選出來的有效虛擬樣本。本論文以液晶面板產業的試產資料進行研究,結果證明所提出的方法是有效的。

    Under the increasing pressure of global competition, product life cycles are becoming shorter and shorter. This means that better methods are needed to analyze the limited information obtained at the trial stage in order to derive useful knowledge that can aid mass production. Machine learning algorithms, such as data mining techniques, are widely applied to solve this problem. However, a certain amount of training samples is usually required to determine the validity of the information that is obtained. This study uses only a few data points to estimate the range of data attribute domains with a data diffusion method, in order to derive more useful information. Then, based on practical engineering experience, we generate virtual samples with a noise disturbance method to improve the robustness of the predictions derived from multiple linear regression (MLR). One real dataset obtained from a large TFT-LCD company is examined in the experiment, and the results show that the proposed approach is effective.

    TABLE OF CONTENTS 摘要 II Abstract III 誌謝 IV TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES VIII 1. INTRODUCTION 1 1.1 Backgrounds 1 1.2 Motivation 5 1.3 Objectives 6 1.4 Organization 8 2. LITERATURE REVIEW 9 2.1 Mega-Trend-Diffusion (MTD) method 9 3. METHODOLOGY 13 3.1 Preliminary -information of data 13 3.2 Virtual sample generation 14 3.2.1 Revised range estimation 14 3.2.2 Data Transformation 17 3.2.3 Virtual sample generation 18 3.2.4 Sample selection 20 4. EXPERIMENTAL STUDY 23 4.1 Color filters application data 23 4.2 Mathematical Models 27 4.3 Analysis of the experimental results 32 5. CONCLUSIONS 35 5.1 Conclusion 35 5.2 Future work 36 REFERENCES 38

    Anthony, M. and Biggs, N., 1997. Computational learning theory. Cambridge, UK: Cambridge University Press
    Chan, K. Y., C. K. Kwong, and Y. C. Tsim. 2010. “A Genetic Programming Based Fuzzy Regression Approach to Modelling Manufacturing Processes.” International Journal of Production Research, 48: 1967–1982.
    Chan, Kit Yan, Tharam S. Dillon, and C. K. Kwong. 2012. “Handling Uncertainties in Modelling Manufacturing Processes with Hybrid Swarm Intelligence.” International Journal of Production Research, 50 (6): 1714–1725.
    Chao, G. Y., T. I. Tsai, T. J. Lu, H. C. Hsu, B. Y. Bao, W. Y. Wu, M. T. Lin, and T. L. Lu. 2011. “A New Approach to Prediction of Radiotherapy of Bladder Cancer Cells in Small Dataset Analysis.” Expert Systems with Applications, 38: 7963–7969.
    Efron, B., and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. New York: Chapmen & Hall.
    Guo, G. D., and C. R. Dyer. 2005. “Learning from Examples in the Small Sample Case: Face Expression Recognition.” IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 35: 477–488.
    Hong, T. P., L. H. Tseng, and B. C. Chien. 2010. “Mining from Incomplete Quantitative Data by Fuzzy Rough Sets.” Expert Systems with Applications, 37: 2644–2653.
    Huang, C. F. 1997. “Principle of Information Diffusion.” Fuzzy Sets and Systems, 91: 69–90.
    Huang, C. F., and C. Moraga. 2004. “A Diffusion-neural-network for Learning from Small Samples.” International Journal of Approximate Reasoning, 35 (2): 137–161. 5
    Huang, C. J., H. F. Wang, H. J. Chiu, T. H. Lan, T. M. Hu, and E. W. Loh. 2010. “Prediction of the Period of Psychotic Episode in Individual Schizophrenics by Simulation-data Construction Approach.” Journal of Medical Systems, 34: 799–808.
    Ivănescu, V. C., J. W. M. Bertrand, J. C. Fransoo, and J. P. C. Kleijnen. 2006. “Bootstrapping to Solve the Limited Data Problem in Production Control: An Application in Batch Process Industries.” Journal of the Operational Research Society, 57: 2–9.
    Jennrich, R. I., and M. D. Schluchter. 1986. “Unbalanced Repeated-measures Models with Structured Covariance Matrices.” 10 Biometrics, 42: 805–820.
    Kuo, Y., T. Yang, B. A. Peters, and I. Chang. 2007. “Simulation Metamodel Development Using Uniform Design and Neural Networks for Automated Material Handling Systems in Semiconductor Wafer Fabrication.” Simulation Modelling Practice and Theory, 15 (8): 1002–1015.
    Laird, N. M., and J. H. Ware. 1982. “Random-effects Models for Longitudinal Data.” Biometrics, 38: 963–974. 15
    Lanouette, R., J. Thibault, and J. L. Valade. 1999. “Process Modeling with Neural Networks Using Small Experimental Datasets.” Computers and Chemical Engineering, 23: 1167–1176.
    Li, D. C., C. C. Chang, C. W. Liu, and W. C. Chen. 2013. “A New Approach for Manufacturing Forecast Problems with Insufficient Data: The Case of TFT–LCDs.” Journal of Intelligent Manufacturing, 24 (2): 225–233.
    Li, D. C., W. C. Chen, C. W. Liu, C. J. Chang, and C. C. Chen. 2012. “Determining Manufacturing Parameters to Suppress System Variance Using Linear and Non-linear Models.” Expert Systems with Applications, 39 (4): 4020–4025.
    Li, D. C., H. C. Hsu, T. I. Tsai, T. J. Lu, and S. C. Hu. 2007. “A New Method to Help Diagnose Cancers for Small Sample Size.” Expert Systems with Applications, 33 (2): 420–424.
    Li, D. C., Wen-Ting Huang, Chien-Chih Chen, and Che-Jung Chang. 2013. “Employing Virtual Samples to Build Early High-dimensional Manufacturing Models.” International Journal of Production Research, 51 (11): 3206–3224.
    Li, D. C., C. W. Liu, and W. C. Chen. 2012. “A Multi-model Approach to Determine Early Manufacturing Parameters for Small-data-set Prediction.” International Journal of Production Research, 50 (23): 6679–6690.
    Li, D. C., L. S. Lin, and L. J. Peng. 2014. “Improving Learning Accuracy by Using Synthetic Samples for Small Datasets with Nonlinear Attribute Dependency.” Decision Support Systems, 59: 286–295.
    Li, D. C., C. S. Wu, T. I. Tsai, and F. M. Chang. 2006. “Using Mega-fuzzification and Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge.” Computers & Operations Research, 33 (6): 1857–1869.
    Li, D. C., C. S. Wu, T. I. Tsai, and Y. S. Lina. 2007. “Using Mega-trend-diffusion and Artificial Samples in Small Data Set Learning for Early Flexible Manufacturing System Scheduling Knowledge.” Computers and Operations Research, 34 (4): 966–982.
    Li, D.C., C.W. Yeh, 2008. A non-parametric learning algorithm for small manufacturing data sets. Expert Systems with Applications, 34, 391-398.
    Lin, Y.S., D.C. Li, 2010. “The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems.” European Journal of Operational Research, 207, 121-130.
    Mondala, S.C., J. Maitib, P.K. Rayb, 2013. "Modelling robustness in serial multi-stage manufacturing processes." International Journal of Production Research, 51(21), 6359-6377.
    Niyogi, P., F. Girosi, and T. Poggio. 1998. “Incorporating Prior Information in Machine Learning by Creating Virtual Examples.” Proceedings of the IEEE, 86: 2196–2209. 35
    Oniśko, A., M. J. Druzdzel, and H. Wasyluk. 2001. “Learning Bayesian Network Parameters from Small Data Sets: Application of Noisy-OR Gates.” International Journal of Approximate Reasoning, 27 (2): 165–182.
    Thomas, M., A. Kanstein, and K. Goser. 1997. “Rare Fault Detection by Possibilistic Reasoning.” Computational Intelligence Theory and Applications, 1226: 294–298.
    Vapnik, V. N. 2000. The Nature of Statistical Learning Theory. 2nd ed. New York: Springer-Verlag.
    Wang, Y. 2003. “On-demand Forecasting of Stock Prices Using a Real-time Predictor.” IEEE Transactions on Knowledge and Data Engineering, 15 (4): 1033–1037.
    Wang, Y., Q. Song, S. MacDonell, M. Shepperd, and J. Shen. 2009. “Integrate the GM(1,1) and Verhulst Models to Predict Software Stage Effort.” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39 (6): 647–65
    Willemain, T. R., R. A. Bress, and L. S. Halleck. 2003. “Enhanced Simulation Inference Using Bootstraps of Historical Inputs.” IIE Transactions, 35: 851–862.

    下載圖示 校內:2016-05-05公開
    校外:2016-05-05公開
    QR CODE