簡易檢索 / 詳目顯示

研究生: 周煒承
Chou, Wei-cheng
論文名稱: 重金屬污泥高溫燒製鐵氧磁體之穩定研究
Stabilization of heavy metal containing sludge by high-temperature ferrite process
指導教授: 張祖恩
Chang, Juu-en
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 118
中文關鍵詞: 重金屬污泥鐵氧磁體化穩定性鉻溶出
外文關鍵詞: Ferrite process, Heavy metal sludge, Stabilization, Chromium leaching
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重金屬污泥富含銅、鋅、鎳、鉻、鐵等多種二價/三價金屬,具有鐵氧磁體化之潛勢。本研究以氧化鐵調整重金屬污泥中二價金屬與三價鐵之莫耳比例,透過添加不同碳源調整燒結氣氛,以XRD晶相分析、熟料重金屬殘留率及TCLP重金屬化學穩定性等分析,探討生料組成、燒結氣氛、溫度等燒結條件對於重金屬污泥鐵氧磁體化之影響,最後以含碳鐵礦泥與重金屬污泥檢討共同燒成具穩定性鐵氧磁體之可行性。
    研究結果發現重金屬污泥於空氣氣氛下,在700ºC燒結生成穩定之鎳鐵氧磁體,燒結體於TCLP試驗中,銅、鋅、鎳三者不易溶出。氮氣氣氛下,不僅提升鎳鐵氧磁體合成率且有助於抑制重金屬污泥中三價鉻氧化成六價鉻。在添加三價鐵達理論莫耳計量比Fe/M=2試驗中,不但鐵氧磁體合成量明顯增加、熟料固相重金屬殘留率大幅提升,且鉻溶出行為亦顯著減緩,其溶出值趨近符合法令規範限值。在利用不同碳源型態及碳源添加量試驗中,經由三價鐵調質重金屬污泥於900℃添加3%活性碳之鐵氧磁體合成率高且熟料中各重金屬殘留率高於94%,其重金屬溶出值皆符合法令規範。
    綜合上述討論,重金屬污泥與含碳鐵礦泥共同燒結鐵氧磁體研究印證上述最適條件適用於該含鐵廢棄物,為一可行之重金屬污泥穩定化資材化技術。

    Heavy metal sludge contains a variety of environmental hazardous heavy metals including copper, zinc, nickel, chromium and iron. With the divalent and trivalent metal ratio, the sludge could be provided as a potential raw material for ferrite stabilizing synthesis. The aim of this study is to stabilize the heavy metal containing sludge via ferrite process, by means of adjusting the molar ratio of divalent and trivalent heavy metals, adding different carbon sources and sintering at different temperatures under air or nitrogen atmospheres. Stabilities of synthesized ferrites were evaluated by quantitative x-ray diffraction analysis (QXRD) and toxicity characteristic leaching procedure (TCLP).
    When the sintering temperature is higher than 700°C under air atmosphere, relative intensity to reference (RIR) of ferrites in sintered product increase slightly, and the concentrations of copper, zinc and nickel in the TCLP leachates of sintered products are almost undetectable. By switching the atmosphere into nitrogen, RIR of ferrite not only increases, the oxidation of trivalent chromium into hexavalent chromium is also inhibited. The results in the molar ratio adjustment shows that the amount of ferrite synthesis and heavy metal containing ratio have significantly increases and the leaching concentration of chromium decreases toward the regulatory level. The results in carbon sources and carbon addition shows that the optimal sintering molar ratio is Fe/M =2, 3% of activated carbon addition, sintering temperature 900°C under nitrogen atmosphere. Over 94% of the heavy metals could retain in the sintered product and the retained heavy metals could be protected by the sintered ferrites from leaching out.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1電鍍污泥和含碳鐵礦泥特性及處置現況 3 2-1-1電鍍污泥之來源 3 2-1-2電鍍污泥處置現況 8 2-1-3含碳鐵礦泥之來源及處置現況 12 2-2鐵氧磁體特性及其應用 15 2-2-1鐵氧磁體材料特性 15 2-2-2鐵氧磁體於環境工程上之應用 23 2-2-3鐵氧磁體之合成方法 27 2-3影響合成鐵氧磁體之燒結條件 30 2-3-1生料組成之影響 30 2-3-2氣氛之影響 32 2-3-3溫度及持溫之影響 38 2-4小結 38 第三章 實驗材料、設備與方法 40 3-1 研究架構及實驗流程 40 3-2實驗材料 42 3-3 實驗方法 43 3-3-1電鍍污泥及含碳鐵礦泥之樣品前處理 43 3-3-2鐵氧磁體化程序 43 3-3-3熟料特性分析 44 第四章 實驗結果與討論 51 4-1電鍍污泥及含碳鐵礦泥基本特性分析 51 4-1-1電鍍污泥及含碳鐵礦泥元素組成近似分析 51 4-1-2電鍍污泥及含碳鐵礦泥特性分析 54 4-1-3小結 58 4-2燒結條件對電鍍污泥燒結鐵氧磁體化之影響 59 4-2-1氣氛對電鍍污泥燒結鐵氧磁體化之影響 59 4-2-2溫度對電鍍污泥鐵氧磁體化之影響 64 4-2-3莫耳計量比對電鍍污泥鐵氧磁體化之影響 70 4-2-4小結 77 4-3碳源型態及添加量對電鍍污泥燒製鐵氧磁體化之影響 78 4-3-1碳源型態對電鍍污泥中重金屬鐵氧磁體穩定化之影響 78 4-3-2碳添加量對電鍍污泥中重金屬鐵氧磁體穩定化之影響 92 4-3-3含碳鐵礦泥與電鍍污泥共同燒結鐵氧磁體化之探討 100 4-3-4電鍍污泥鐵氧磁體化適當條件之综合探討 105 第五章 結論與建議 108 5-1結論 108 5-2建議 110 參考文獻 111

    Ahmed, M.A., Alonso, L., Palacios, J.M., Cilleruelo, C. and Abanades, J.C., Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization, Sol. Sta. Ion. 138(2000) 51-62
    Allah, S.SA., Fayek, M.K., Effect of Cu substitution on conductivity of Ni-Al ferrite, J. Phy. Chem. Sol. 61(2000) 1526-1534
    Barth, E.F., An overview of the history, present status, and future direction of solidification/stabilization technologies for hazardous waste treatment. J. Hazard. Mater. 24(1990) 103-109
    Bissett, L.A., Strickland, L.D., Analysis of a fixed-bed gasifier IGCC configuration, Ind. Eng. Chem. Res 30(1991) 170-179
    Bandopadhyay, A., Ganguly, A., Prasad, K.K., Sarkar, S.B. and Ray, H.S., Thermogravimetric studies on the reoxidation of direct reduced iron at high temperatures, ISIJ Int., 29(9)(1989) 753-760
    Bigham, J.M., Fritzpatrick, R.W., Schulze, D.G., Dixon, J.B., Schulze, D.G., Ristic, M., Hannoyer, B., Popovic, S., Music, S. and Bajraktaraj, N., Ferritization of copper ions in the Cu-Fe-O system, Mat. Sci. Eng. B, 77(2000) 73-82
    Bian P., Ju, D.Y., A new low-temperature sintering method and characteristic evaluation of ferrite magnetic materials, J. Mater. Sci. Technol., 20(1)(2004) 108-110
    Bricka, R.M., Investigation and evaluation of the performance of solidified cellulose and starch xanthate heavy metal sludges, U.S. army corps of engineers waterway experiment station, technical report EL-88-5(1988)
    Caizer, C., Stefanescu, M., Magnetic characterization of nanocrystalline Ni-Zn ferrite powder prepared by the glyoxylate precursor method, J. Appl. Phys., 35(2002) 3035-3040
    Camci, L., Aydin, S. and Arslan, C., Reduction of iron oxides in solid wastes generated by steelworks, J. Eng. Env. Sci., 26(2002) 37-44
    Campbell, S.J., Kaczmarek, W.A. and Wang, G.M., Mechanochemical transformation of haematite to magnetite, NSM., 6(1995) 735-738
    Cheng, K.Y., Controlling mechanisms of metal release from cement-based waste form in acetic acid solution, Ph.D. Disseration, University of Cincinnati, Cincinnati, OH, (1991)
    Choi, Y., Cho, N.I., Kim, H.C. and Hahn, Y.D., Magnetic properties of Ni-Zn ferrite powders formed by self-propagating high temperature synthesis reaciton, J. Mater. Sci., 11(1)(2000) 25-30
    Cussler, E., Kopinsky, J. and Weimer, J., The effect of pore diffusion on the dissolution of porous mixtures. Chem. Ene. Sci. 38(1981) 2027-2033
    Delgado, A.L., Martin de Vidales J.L., Vila, E and F. Lopez, A., Synthesis of mixed ferrite with spinel-type structure from a stainless steelmaking solid waste, J. Alloy. Compd., 281(1998) 312-317
    Danielsen, K.M., Hayes, K.F., pH dependence of carbon tetrachloride reductive dechlorination by magnetite, J. Env. Sci. Tec., 38(3)(2004) 4745-4752
    Folhueras, M.B., Díaz, R.M. and Xiberta, J., Sulphur retention duting co-combustion of coal and sewage sludge, J. Fuel, 83(2004) 1315-1322
    Gonzalez, C.G, Vicente, J.D, Tejada, M.M.R., Lopez, M.T.L., Caballero, F.G. and Duran, J.D.G., Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles, Langmuir, 21(2005) 4410-4419
    Guaita, F. J., Beltran, H., Cordoncillo, E., Carda, J.B. and Escribano, P., Influence of the precursors on the formation and the properties of ZnFe2O4, J. Euro. Cer. Soci., 19(1999) 363-372
    Gupta, S., Sahajwalla, V., Burgo, J., Chaubal, P. and YoumansS, T., Carbon structure of coke at high temperatures and its influence on coke fines in blast furance dust, J. Metall. Mater. Trans. B, 35(2005) 385-394
    Hamdeh, H.H., Ho, J.C., Oliver, S.A., Willey, R.J., Kramer, J., Chen, Y.Y., Lin, S.H., Yao, Y.K., Daturi, M. and Busca, G., Ferrimagnetic zinc ferrite fine powders, IEEE trans. magn., 31(6)(1995) 3808
    Hideki, O.N., Tsubone, Y. and Usui, T., Gaseous reduction behavior of powdered iron ore sinter and analysis on the basis of rist model for fixed bed, ISIJ Int., 42(5)(2002) 482-488
    Hu, J., C., I.M. and Chen, G., Removal Cr(VI) by magnetite nanoparticles, Water Sci. Technol., 150(12)(2004) 139-146
    Hsieh, L.H., Whitwman, J.A., Effect of oxygen potential on mineral formation in lime-fluxed iron ore sinter, ISIJ Int., 29(8)(1989) 625-634
    Hsieh, L.H., Whiteman, J.A., Sintering conditions for simulating the formation of mineral phases in industrial iron ore sinterr, ISIJ Int., 29(1)(1989) 24-32
    Hatashi S., Iguchi, Y., Iron carbide synthesis by reaction of iron ore with H2-CH4 gas mixtures contering traces of sulfur, ISIJ Int., 37(4)(1997) 345-349
    Illés, E., Tombácz, E., Colloids and A, S., The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite, Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 230(2004) 99-109
    Illés, E., Tombácz, E., The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, J. Coll. Int. Sci., 295(2006) 115-123
    Iguchi Y., Takada, Y., Rate of direct reactions measured in vacuum of iron ore-carbon composite pellets heated at high temperatures: influence of carbonaceous materials, oxidation degree of iron oxides and temperature, ISIJ Int., 44(4)(2004) 673-681
    Karamanov, A., Pisciella, P., Cantalini, C. and Pelino, M., Influence of Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses made with industrial wastes, J. Am. Ceram. Soc., 83(12)(2000) 3153-3157
    Kazinczy, B., Kótai, L., Sajó, I.E., Holly, S. K., Jakab, E. I, G and Szentmihályi, K., Phase relations and heat-induced chemical processes in sludge of hot-dip galvanization, Ind. Eng. Chem. Res., 41(2002) 720-725
    Kazinczy, B., Kótai, L., Gács, I., Sajó, I.E., Sreedhar, B. and Lázár, K., Study of the preparation of zinc(II) ferrite and znO from zinc- and iron-containing industrial wastes, Ind. Eng. Chem. Res. 42(2003) 318-322
    Kang, H.W., Chung W.S. and Muryama, T., Effect of iron ore size on kinetics of gaseous reduction, ISIJ Int., 38(2)(1998) 109-115
    Karapinar, N., Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation, Int. J. Miner. Process, 71(2003) 45-54
    Kawatra, S.K., Ripke, S.J., Sintering of magnetite pellets under oxidizing, neutral and reducing atmospheres, Miner. Metall. Process., 20(4)(2003) 165-170
    Kamiyama, T., Haneda, K., Sato, T., Ikeda S. and Asano, H., Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction, Sol. Sta. Com., 81(7)(1992) 563-566
    Kodama, T., Watanabe, Y., Miura, S., Sato M. and Kitayama, Y., Reactive and selective redox system of Ni(II)-ferrite for a two-step CO and H2 production cycle from carbon and water, Energy, 21(12)(1996) 1147-1156
    Loo, C.E., Matthews, L.T., England, B.M., Yang C.Y. and Yin, J.Y., Sintering reactions between a complex chinese iron ore concentrate and australian ores, Inst. Min. Metall., Trans. C, 104(1995) 70-80
    Li, P., Yu, Bo. and Wei, X., Synthesis and characterization of a high oil-absorbing magnetic composite material, J. Appl. Polym. Sci., 93(2004) 894-900
    Li, X., Lu, G. and Li, S., Synthesis and characterization of fine particle ZnFe2O4 powders by a low temperature method, J. Alloys Compd., 235(1996) 150-155
    Li, Y., Zhao, J., Han, J. and He, X., Combustion synthesis and characterization of NiCuZn ferrite powders, Materl Res. Bull., 40(2005) 981-989
    Li, C.T., Lee, W.J., Huang, K.L., Fu, S.F. and Lai, Y.C., Vitrification of chromium electroplating sludge, Environ. Sci. Technol., 41(2007) 2950-2956
    Mishra, B., Staley, A. and Kirkpatrick, D., Recovery of value-added products form red mud, Min. Met. Pro., 19(2)(2002) 87-94
    Manning, B.A., Hunt, M.L., Amarhein, C. and Yarmoff, J.A., Arsenic(III) and arsinic(V) reactions with zerovalint iron corrosion products, Environ. Sci. Technol., 36(2002) 5455-5461
    Mangalaraja, R.V., Anathakumar, S., Manohar, P. and Gnanam, F.D., Initial permeability studies of Ni-Zn ferrites prepared by flash combustion technique, Mater. Sci. Eng. A, 355(2003) 320-324
    McCurrie, R.A., Ferromagnetic materials, Academic Press Inc., San Diego, (1994)
    Ni, H.W., Chang, D.Q. and Jiang, J.P., Preparation of iron carbide from magnetite pellets by CO-H2 mixtures reduction, Acta Metall. Sin., 14(4)(2001) 280-284
    Nagata, K., Kojima, R., Murakami, T., Susa M. and Fukuyama, H., Mechanisms of pig-iron making from magnetite ore pellets containing coal at low temperature, ISIJ Int., 41(11)(2001) 1316-1323
    Nasr M.I., Youssef, M.A., Optimization of magnetizing reduction and magnetic separation of iron ores by experimental design, ISIJ Int., 36(6)(1996) 631-639
    Niu, X., Du, W., Preparation and gas sensing properties of ZnM2O4 (M=Fe, Co, Cr), Sens. actuators. B, 99(2004) 405-409
    Nanoti, V.M., Kulkarni, D.K., Structural, electrical and magnetic study of the Zn0.5Ni0.5FexCr2-xO4 system, J. Mat. Sci. Let., 15(1996) 636-638
    Ohe, K., Tagai, Y., Nakamura, S., Oshima, T. and Baba, Y., Adsorption behavior of arsenic(III) and arsenic(V) using magnetite, J. Chem., 38(8)(2005) 671-676
    Polushkin, M. E., Lekin, V.P., Yusupov, R.B., Gladskikh, V.I. and Kim, T.F., Using metallurgical slurry in sintering, Steel in Translation, 34(12)(2004) 1-5
    Peng, X., Luan, Z., Di, Z., Zhang, Z. and Zhu, C., Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water, Chunlei Source: carbon, 43(2005) 880-883
    Rfferty, A., Gun’ko, Y. and Raghavendra, R., An investigation of co-fired varistor-ferrite materials, J. Euro. Cera. Soci., 24(2004) 2005-2013
    Ravinder, D., Reddy, K.S., Mahesh, P., Rao, T.B., and Venudhar, Y.C., Electrical conductivity of chromium substituted copper ferrites, J. Alloys Compd., 370(2004) 17-22
    Rashad, M.M., Fouad, O.A., Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO, Mat. Che. Phy., 94(2005) 365-370
    Rashad, M.M., Synthesis and magnetic properties of manganese ferrite from low grade manganese ore, Mat. Sci. Eng. B, 127(2006) 123-129
    Rongcheng, W., Jiuhui, Q., Removal of azo dye from water by magnetite adsorption-fenton oxidation, Water Environ. Res., 76(7)(2004) 2637-2642
    Satyanarayana, L., Madhusudan Reddy, K. and Manorama Sunkara, V., Nanosized spinel NiFe2O4:a novel material for the detection of liquefied petroleum gas in air, Mate. Chem. Phy., 82(2003) 21-26
    Sun, A.C., Kuo, P.C., Chou, C.Y., Chen, S.C., Lie, C.T., Lin, M.H., Chen, J.W. and Huang, H.L., Magntoresistance of sintered(Fe2O3)100-x(Fe3O4)X ferrites, J. Mag. Magne. and mag. mat., 272-276(2004) 1776-1777
    Seki, I., Nagata, K., Reduction kinetics of hematite powder mechanically milled with graphite, ISIJ Int., 46(1)(2006) 1-7
    Shigematsu, N., Iwai, H., Effect of CaO added with SiO2 and/or Al2O3 on reduction rate of dense wustite by hydrogen, ISIJ Int., 29(6)(1989) 486-494
    Sobrinho, P.J.N., Espinosa, D.C.R. and Tenório, J.A.S., Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries, Ironmaking and Steelmaking, 30(1)(2003) 11-17
    Sun, S., Lu, W.K., Building of a mathematical model for the reduction of iron ore in ore/coal composites, ISIJ Int., 39(1999) 30-138
    šepelák, V., Steinike, U., Uecker, D.C., Trettin, R., Wibmann, S. and Becker, K.D., High-temperature reactivity of mechanosynthesized zinc ferrite, Sol. Sta. Ion., 101-103(1997) 1343-1349
    Tay, J.H., Show, K.Y., Hong, S.Y., Chien, C.Y. and Lee, D.J., Thermal stabilization of iron-rich sludge for high strength aggregates, J. Mater. Civ. Eng., 15(6)(2003) 577-585
    Tay, J.H., Show, K.Y., Resource recovery of sludge as a building and construction material- a future trend in sludge management, Wat. Sci. Tech., 36(11)(1997) 259-266
    Thurnhofer, A., Schachinger, M., Winter, E., Mali H. and Schenk, J.L., Iron ore reduction in a laboratory-scale fluidized bed reactor-effect of pre-reduction on final reduction degree, ISIJ Int., 45(2)(2005) 151-158
    Tamura, M., Tokunaga, T., Reduction of iron-silicon-oxysulfide by CO gas injection, Metal. Mater. Trans. B, 30(1999) 873-875
    Tao, S., Gao, F., Liu, X. and Sorensen, O.T., Preparation and gas-sensing preperties of CuFe2O4 at reduced temprature, Mate. Sci. Eng. B, 77(1997) 172-176
    Tamaura, Y., Katsura, T., Rojarayanont, S., Yoshida T. and Abe, H., Ferrite process; heavy metal ions treatment system, Wat. Sci. Tech., 23(1991) 1893-1900
    Usui, T., Ohime, M., kaneda, S., Ohmasa, M. and Mofita, Z.I.,. Re-examination of method of analysis on the rate of stepwise reduction of a single sinter particle with CO-CO2-N2 gas mixture, ISIJ Int., 31(5)(1991) 425-433
    Wang, Y., Linag, Z., Yuan, X. and Xu, Y., Preparation of cellular iron using wastes and its application in dyeing wastewater treatment, J. Porous Mater., 12(2005) 225-232
    Yang L.X., Matthews, E., Oxidation and sintering of magnetite ore under oxide Conditions, ISIJ Int., 37(9)(1997) 854-861
    Yang L.X., Loo, C.E., Structure of sinters formed from complex chinese iron ores, ISIJ Int., 37(5)(1997) 449-457
    Yi, X., Yitai, Q., Jing, L., Zuyao, C. and Li, Y., Hydrothermal preparation and characterization of ultrafine powders of ferrite spinels MFe2O4(M=Fe, Zn and Ni), Mater. Sci. Eng. B, 34(1995) 1-3
    Yue, Z., Guo, W., Zhou, J., Gui, Z. and Li, L., Synthesis of nanocrystalline by sol-gel combustion process: the influence of pH value of solution, J. Magn. Magn. Mater., 270(2004) 216-223
    Zhu, D., Pan, J., Qiu, G., Clout, John., Wang, Changan., Guo, Y. and Hu, C., Mechano-chemical activation of magnetite concentrate for improving its pelletability by high pressure roll grinding, ISIJ Int., 44(2)(2004) 310-315
    Zhu, Y., Mimura, K., Lim, J.W., Isshiki, M. and Jiang, Q., Brief review of oxidation kinetics of copper at 350℃ to 1050℃, Metal. Mater. Trans. A, 37(2006) 1231-1237
    Statistical data table(2004), Industrial Waste Control Center, EPA, Taiwan
    Statistical data figure(2002), Industrial Development Bureau Ministry of Economic Affairs, Taiwan
    施百鴻,2005。含重金屬泥渣類廢棄物再利用於水泥矽酸鹽燒製之定量研究,國立成功大學環境工程研究所,博士論文。
    陳政澤、賴重光、黃嘉宏、蔡啟明、張贊淵、黃家銘、曾善訓、黃姚玲、鄧瑞琴,2001。國內有害污泥現況分析與可行處理方式評估,第十六屆廢棄物處理技術研討會。
    巢志成、陳明德、王鑑恆,1997。汙泥之焚化處理技術,工業汙染防治,64卷,138-155。
    張祖恩、蔣立中、盧幸成、施百鴻、張益國,2003。重金屬污泥作為水泥替代原料可行性研究,第十八屆廢棄物處理技術研討會。
    林宗曾,1985。重金屬污泥之飛灰固化法研究,國立台灣大學環境工程研究所,碩士論文。
    陳文泉,1992。重金屬廢水鐵氧磁體法處理之基礎研究,國立成功大學礦冶及材料科學研究所,碩士論文。
    磁性技術手冊,1997,金重勳,中華民國磁性技術學會。
    黃契儒,1993。電鍍廢水鐵氧磁體化及前處裡研究,國立成功大學礦冶及材料科學研究所,碩士論文。
    張毓寬,2002。鉻污泥資源化基礎研究,國立成功大學資源工程研究所,碩士論文。
    黃淑惠,2001。Sol-Gel法制備鑭系鈣鈦礦膜之磁阻特性,國立成功大學材料科學及工程研究所,碩士論文。
    周沅錞,2006。燒結條件對鐵礦泥鐵氧磁體化之影響,國立成功大學環境工程研究所,碩士論文。

    下載圖示 校內:2008-08-02公開
    校外:2008-08-02公開
    QR CODE