簡易檢索 / 詳目顯示

研究生: 蕭高軒
Hsiao, Kao-Hsuan
論文名稱: 以混合碳材作為直接甲醇燃料電池 觸媒擔體之研究
Study of Mixed Carbon Materials as the Catalyst Supports for Direct Methanol Fuel Cells
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 123
中文關鍵詞: 膜電極組直接甲醇燃料電池觸媒離子交換膜
外文關鍵詞: proton exchange membrane, catalyst, membrane electrode assembly, Direct methanol fuel cell
相關次數: 點閱:163下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲醇燃料電池在行動元件,如筆記型電腦及行動手機上,因為其元件重量輕並且設計簡單的優點,因此有著相當大的潛力。本研究目標為對膜電極組之觸媒漿料配方、減低電池阻抗、估算電池效率及甲醇滲透量、測量混合電壓、混合型觸媒擔體及不同質子交換膜做一系列的測試。利用三極式甲醇燃料電池系統,可以分別對陰陽兩極作個別的分析,進而挑選出對陰陽兩極合適的觸媒成份、漿料配方,得到更佳的電池效能。除了以上的分析,另外使用了碳酸鋇重量分析法求取甲醇的透滲透
    量以及電池轉化效率。陰極的電位在甲醇燃料電池中為一混成電壓,受到甲醇滲透量的增加會有所降低。本研究以半電池的方法,模擬出實際的狀況,以求取在開環電位時甲醇滲透濃度。本研究亦利用三極式甲醇
    燃料系統及半電池實驗系統,來對奈米碳管與碳黑混合型觸媒及質子交換膜,作電池的測試,並且得到一些初步的成果。研究發現在膜電極組陰陽兩極加上一層疏水性碳布,比無碳布的系統,最大電流密度有27%效能的增加。另外陽極採用Pt:Ru = 1:2,陰極採用only Pt的搭配型觸媒,其最大電流密度比單一成份的觸媒有6%
    及28% 的增加。 以碳酸鋇重量分析法求取甲醇的透滲透量以及電池轉化效率,當操作電流增加時,甲醇等效滲透電流隨之降低,電池轉化效率跟著提高。另外以半電池模擬單電池開環電位下甲醇滲透濃度,結果發現甲醇滲透濃度大約為0.01M。測試奈米碳管與碳黑混合型觸媒(合併含浸),當兩者重量比例為1:1時,比起以碳黑作擔體的觸媒有大約20~30%效能的增進。另外奈米
    碳管與碳黑混合型觸媒(分別含浸後混合),當把觸媒量減半時,各組成比例最大電流密度都有所增加,顯現出原本觸媒使用量太多使的觸媒層太厚,而得到不好的結果。不管觸媒使用量有無減半,都是以100% CB
    此組成比例電池效能最佳,100% CNT最差。使用半電池測試電極,無熱壓電極以75% CB + 25% CNT此組成比
    例觸媒為最佳;經熱壓過的電極以25% CB + 75% CNT此組成比例觸媒最佳。

    Direct methanol fuel cells (DMFC) have potential applications in portable devices such as laptop computers and cellular phones, because of low weight and simple system features. The research aims on the investigates of the membrane electrode assembly (MEA) catalyst ink content,impedence of cell decrease, efficiency of cell estimation, the amount of methanol crossover, mixted potential mesasurement, mixed catalyst support and different proton exchange membranes testing.
    By using the three-electrode system of DMFC, we have tested individual electrodes, and then chosen suitable catalyst content and the ink for anode and cathode to obtain better cell performance. Other than the above works, we have determined the amount of methanol crossover and the cell efficiency with a gravimetric method of BaCO3. The cathodic potential is a mixted potential in DMFC, and the potential decreased with increasing the amount of methanol crossover. The research used the half-cell to simulate the actual situation, and to estimate the methanol permeable concentration in OCV. The research also applied the three-electrode system of DMF and half-cell to test Pt-Ru catalysts on the supports of mixture of carbon nano tube and active carbon, and proton exchange membranes, and we have gotten some preliminary results.
    The research discovered that MEA with wet proofing carbon cloth as the diffusion layer has 27% max current density increased more than the MEA without carbon cloth. In addition the arranged catalysts which anodic catalyst content is Pt/Ru = 1/2 and the cathodic catalyst content is only Pt have 6% and 28% max current density increased more than the singl content catalysts.
    Gravimetric determination of BaCO3 was employed to accurately analyze the amount of methanol crossover and the cell efficiency. Equivalent current of methanol crossover decreased and the cell efficiency increased with increasing discharge current. In addition the half-cell was employed to simulate the actual situation, and to estimate the methanol permeable concentration in OCV, and then the research discovered the methanol permeable concentration is about 0.01M.
    Pt-Ru catalysts on the supports of mixture of carbon nano tube and carbon black (together immersion) were tested, and when weight ration (carbon nano tube to active carbon) is 1:1, the catalysts on the supports of mixture of carbon nano tube and carbon black have 20~30% max current density increased more than the catalysts on the supports of carbon black.
    Pt-Ru catalysts on the supports of mixture of carbon nano tube and carbon black (indidviual immersion) were tested, and when Pt loading was decreased half, the max current density increased. It showed the original catalyst layers are too thick and got bad results. No matter the amount of catalyst was decreased half or not, the content which is 100% CB has the best cell performance the content which is100% CNT has the worst cell performance. Half cell was employed to test electrodes. The electrodes with hot pressing have best cell performance at 75% CB + 25% CNT, and the electrodes without hot pressing have best cell performance at 25% CB + 75% CNT.

    目錄 摘要…………………………………………………………………Ⅰ 英文摘要……………………………………………………………Ⅲ 致謝…………………………………………………………………Ⅵ 目錄…………………………………………………………………Ⅶ 圖目錄………………………………………………………………VII 第一章 緒論………………………………………………………1 1.1 燃料電池簡介…………………………………………………1 1.1.1 燃料電池特點……………………………………1 1.1.2 燃料電池種類…………………………………3 1.1.3 全球及台灣大陸在燃料電池的發展…………………6 1.2 直接甲醇燃料電池……………………………………………10 1.2.1 甲醇滲透現象(Methanol Crossover)……………………10 1.2.2 Nafion®質子交換膜交換膜………………………………12 1.2.2.1 簡介……………………………………………12 1.2.2.2 Nafion®的改質…………………………………15 1.2.3 陽極觸媒材料…………………………………15 1.2.3.1 Pt-Ru/CB合金觸媒……………………………16 1.2.3.2 合金觸媒………………………………………18 1.2.4 陰極觸媒材料……………………………………………18 1.2.5 觸媒擔體…………………………………………………18 1.2.6 Pt-Ru/CB 或Pt-M/CB 合金觸媒製備…………………19 1.2.6.1 膠體法(Colloid Method)………………………19 1.2.6.2 微乳化法(Microemulsion Method)……………19 1.2.6.3 含浸法(Impregnation Method)…………………20 1.2.7擴散層 (Diffusion Layer)………………………………20 1.2.8 膜電極組…………………………………22 1-3 研究動機與目的………………………………………………22 第二章 原理………………………………………………………25 2.1 燃料電池構造及電極內部輸送現象…………………………25 2.2 甲醇電催化氧化機制…………………………………………26 2.3 參考電極之應用………………………………………………29 2.4 電池放電的極化現象…………………………………………34 2.4.1 活性過電壓………………………………………………36 2.4.2 歐姆過電壓…………………………………37 2.4.3 質傳過電壓…………………………………37 2.5 甲醇滲透量與電池效率的估算………………………………38 2.6 定電壓法求取系統平衡電壓…………………………………39 2.7 掃描電壓(Potential Sweep)……………………………………39 2.8 電子在擔體上傳遞的現象……………………………………40 2.8 甲醇/水溶液之phase diagram………………………………41 第三章 實驗設備與步驟…………………………………………43 3.1 藥品與材料……………………………………………………43 3.2 儀器設備………………………………………………………44 3.3 Nafion的前處理……………………………………………45 3.4 膜電極組的製備………………………………………………45 3.4.1 Pt/CB,CNT與Pt-Ru/CB,CNT觸媒製備……………………45 3.4.2 電極漿料及氣體擴散電極之製備………………………46 3.4.3 熱壓法製備膜電極組……………………………………47 3.5 參考電極製備…………………………………………………52 3.6 電池放電測試…………………………………………………57 3.6.1 單電池組裝………………………………………57 3.6.2 放電測試系統組裝………………………………………57 3.7 甲醇滲透量與電池效率的估算………………………………61 3.8 混成電壓之測量………………………………………………63 3.8.1 陰陽兩極平衡電壓的測量與混合電壓的求取…………63 3.8.2 以混合進料方式求取混合電壓…………………………64 3.9 以半電池掃描電壓方式比較陽極混合型觸媒活性大小………64 3.9 觸媒與電極特性分析…………………………………………68 3.10.1 穿透式電子顯微鏡(TEM)分析………………………68 3.10.2 能譜儀分析(EDS)……………………………………68 3.10.3 掃瞄式電子顯微鏡(SEM)……………………………68 第四章 結果與討論………………………………………………69 4.1 觸媒特性分析…………………………………………………69 4.1.1能譜儀分析分析(EDS)…………………………………69 4.1.2穿透式顯微鏡分析(TEM)………………………………69 4.2 電極結構分析………………………………………………74 4.3 碳布的選用與否………………………………………………77 4.4 不同比例的白金與釕對單電池的影響…………………80 4.5 甲醇滲透量與電池效率的測量………………………83 4.6 混成電壓的測量…………………………87 4.7 碳黑與米碳管混合型觸媒對單電池性能的影響………90 4.7.1 碳黑與奈米碳管合併含浸混合型觸媒…………………90 4.7.2 碳黑與奈米碳管分別含浸混合型觸媒…………………90 4.7.3 分別含浸混合型觸媒觸媒量減半………………………92 4.8 碳黑與奈米碳管合併含浸混合型觸媒對半電池的影響……100 4.9 改良型質子交換膜的測試……………………………………106 第五章 結論與建議事項…………………………………………109 5.1 結論……………………………………………………………109 5.2 建議事項………………………………………………………111 參考文獻……………………………………………………………112 自述…………………………………………………………………123 圖目錄 Fig. 1-1 Basic reactions of fuel cells in different types of electrolytes…………………………………………………9 Fig. 1-2 The diagram of DMFC with Pt-PEM………………………13 Fig. 1-3 Schematic model of the permeation region through NafionRegion A: rigid hydrophobic backbone. Region B: flexible perfluorocarbon where gases permeate. Region C: Ionic cluster region containing water similar to bulk water………………………13 Fig. 1-4 Methanol crossover against conductance for Nafion film…14 Fig. 1-5 Quasi-stationary current-potential curves (dU/dt=0.5 mV/s)of the methanol oxidation on electrodeposited Pt and Pt-Ru samples in sulfuric acid methanol solution at 50oC. The numbers indicate the Ru content of the corresponding sample……………………………………………………17 Fig. 1-6 Schematics of the two-phase transport in the anode diffusion layer………………………………………………21 Fig. 2-1 The reactions of anode and cathode of DMFC…………26 Fig. 2-2 (a) DMFC unit cell performance using Pt/Ru (1:1), Pt/Ni (1:1), and Pt/Ru/Ni (5:4:1) as the anode. The cell operating temperature was 70°C. Anode conditions are 2 M CH3OH, 1 mL/min. Cathode conditions are dry O2, 500 mL/min, no back pressure. Nafion 117 was used as the membrane…………28 Fig. 2-3 (a)Potential drop between working and auxiliary electrodes in solution and iRu measured at the reference electrode. (b) Representation of the cell as a potentiometer……………32 Fig. 2-4 (a) two plane electrodes opposite each other in the walls of an insulating flow channel. (b) three electrode-membrane electrode assembly. (c) Representation of the cell as a potentiometer………………………………………………33 Fig. 2-5 The relationship between cell potential and current in proton exchange membrane fuel cell………………………34 Fig. 2-6 The phenomenon of electron transfer……………………40 Fig. 2-7 The phase diagram of methanol-water solution……………41 Fig. 2-7 Density of Methanol-Water solution at 30oC………………42 Fig. 3-1 The flow sheet for synthesizing Pt-Ru/CB or Pt-Ru/CNT catalyst……………………………………………………48 Fig. 3-2 The schematic diagram of reactor for synthesizing Pt-Ru/CB or Pt-Ru/CNT catalysts…………………………49 Fig. 3-3 The flow sheet for preparation of gas diffusion electrode…50 Fig. 3-4 Schematic diagram of membrane electrode assembly.……51 Fig. 3-5 MEA with Reference electrode……………………………54 Fig. 3-6 Device of Reference electrode……………………………55 Fig. 3-7 Schematic diagram of (a) reactor for the preparation of Pt / Nafion. (b) Pt / Nafion……………………………………56 Fig. 3-8 Schematic diagram of the single cell stack…………………59 Fig. 3-9 Schematic diagram of fuel cell……………………………60 Fig. 3-10 Schematic giagram of system to collect CO2………………62 Fig. 3-11 Schematic diagram of half cell reactor……………………66 Fig. 3-12 Schematic diagram of half cell reactor……………………67 Fig. 4-1 Atomic ratio of catalyst (CB support) analyzed by EDS…70 Fig. 4-3 Atomic ratio of catalyst (CNT support) analyzed by EDS…71 Fig. 4-3 TEM micrograph of the Pt-Ru/CB catalyst with Pt:Ru=1:2.33 at x1,000……………………………………………72 Fig. 4-4 TEM micrograph of the Pt-Ru/CNT catalyst with Pt:Ru=1:2.41 at x1,000………………………………………73 Fig. 4-5 SEM micrographs of gas diffusion electrode of two magnifications………………………………………………75 Fig. 4-6 Cross-sectional SEM micrograph of MEA………………76 Fig. 4-7 Discharging curves of cell with and without carbon cloth……78 Fig. 4-8 Power density of cell with and without carbon cloth……79 Fig. 4-9 Discharging curves of cell with various catalyst contents…81 Fig. 4-10 Power density of cell with various catalyst contents………82 Fig. 4-11 CO2 permeation rate through Nafion 117 membrane from anode to cathode…………………………………………85 Fig. 4-12 The dependencs of methanol crossover and faradaic efficiency on discharge current…………………………86 Fig. 4-13 The Tafel plot for cathode and anode….…………………88 Fig. 4-14 The Tafel plot for cathode…………………………………89 Fig. 4-15 Discharging curves with different types of catalyst supports……………………………………………………93 Fig. 4-16 Power density of cell with different types of catalyst supports…………………………………………………94 Fig. 4-17 Discharging curves of cathode with different types of catalyst supports.……………………………………………95 Fig. 4-18 Discharging curves of anode with different types of catalyst supports…………….…….…………………………………96 Fig. 4-19 Discharging curves of cell with different types of catalyst supports…………………………..………..………………97 Fig. 4-20 Max Power density of cell vs. different Pt loading………98 Fig. 4-21 Max Power density of cell vs. different Pt loading………99 Fig. 4-22 Discharging curves with different types of catalyst supports……………………………………………………103 Fig. 4-23 Linear sweep curves of cell with different types of catalyst supports with hot pressing…………………………………104 Fig. 4-24 Current curves at 0.6V without and with hot pressing of cell with different types of catalyst supports………………105 Fig. 4-25 Discharging curves of cell with different types of proton exchange membranes………………………………………107

    1. 黃煜騰,鄭耀宗,吳龍暉,“燃料電池使用台灣地區生質氣體能源的潛力分析”,八十二年能源經濟學術研討會論文集,281-301頁 (1993)。
    2. J. Giner, C. Hunter, “Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, pp. 1124-1130 (1969).
    3. 鄭煜騰,萬瑞霙,林修正,“酸性燃料電池的製成研究”,能源季刊,第二十五卷,第四期,161頁 (1995)。
    4. O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem., Vol. 22, pp. 995-1001 (1992).
    5. E. A. Ticianelli, C. R. Derouin, A. Redondo, S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., Vol. 135, pp. 2209-2214 (1998).
    6. 李國霖,“熔融碳酸鹽燃料電池的研發”,能源季刊,第二十四卷,第四期,57頁 (1997)。
    7. K. Scott, W. M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”, J. Power Sources, Vol. 79, pp. 43-59 (1999).
    8. A. Bıyıkoğlu, “Review of proton exchange membrane fuel cell models”, Int. J. Hydrogen Energy, Vol. 30, pp. 1181-1212 (1998).
    9. A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, New York, pp. 15-16 (1989).
    10. 鄭煜騰,鄭耀宗,“質子交換膜型燃料電池的製造技術”,能源季刊,第二十七卷,第二期,118頁 (1997)。
    11. A. J. Appleby, and F. R. Folkes, “Fuel Cell Handbook” Van Nostrand Reinhold, New York, pp. 32-37 (1989).
    12. P. S. Kauranen, E. Skou, “Methanol Permeability in Perflousulfonateproton Exchange Membranes at Elevated Temperature”, J. Appl. Electrochem., Vol. 26, pp. 909-915 (1996).
    13. R. Jiang, D. Chu, “Comparative Studies of Methanol Crossover and Cell Performance”, J. Electrochem. Soc., Vol. 151, pp. 69-76 (1998).
    14. S. Hikita, K. Yamane, Y. Nakajima, “Influence of Cell Pressure and Amount of Electrode Catalyst in MEA on Methanolcrossover of Direct Methanol Fuel Cell”, JSAE Review, Vol.23, pp. 133-135 (2002).
    15. S. Hikita, K. Yamane, Y. Makajima, “Measurement of Methanol Crossover in Direct Methanol Fuel Cell”, Jsae Review, Vol. 22, pp. 151-156 (2001).
    16. D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, “Performance of A Direct Methanol Polymer Electrolyte Fuel Cell”, J. Power Sources, Vol. 71, pp. 169-173 (1998).
    17. H. Huang, P. K. Dasgupta, Z. Genfa, J. Wang, “Pulse Ampero- metric Sensor for the Measurement of Atmospheric Hydrogen Peroxide”, Anal. Chem., Vol. 68, pp. 2062-2066 (1996).
    18. J. S. Do., R. Y. Shieh, “Electrochemical Nitrigen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators, Vol.37, pp. 19-26 (1996).
    19. H. Uchida, Y. Mizuno, M. Watanabeb, “Suppreion of Methanol Crossover and Distribution of OhmicResistance in Pt-Dispersed PEMs under DMFC Operation”, J. Electrochem. Soc., Vol. 149, pp. 682-687 (2002).
    20. Z. Ogumi, Tohru Kuroe, Z. I. Takehara, “Gas Permeation in SPE Method - Ⅱ. Oxygen and Hydrogen Permeation through Nafion”, J. Electrochem. Soc., Vol. 132, pp. 2601-2605 (1985).
    21. L. J. Hobson, H. Ozu, M. Yamaguchi, “Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 148, pp. 1185-1190 (2001).
    22. Z. G. Shao, X. Wang, I. M. Hsing, “Composite Nafion/polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell”, J. Membr. Sci., Vol. 210, pp. 147-153 (2002).
    23. Z. G. Shao, X. Wang, I. M. Hsing, “Nafion Membrane Coated with Sulfonated Polyvinyl alcohol.-Nafion Film for Direct Methanol fuel Cells”, Electrochem. and Solid-State Letters, Vol. 5, pp. 185-187 (2002).
    24. Y. M. Kim, K. W. Park, J. H. Choi, I. S. Park, Y. E. Sung, “A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration Methanol Fuel in DMFC”, Electrochem. Commun., Vol. 5, pp. 571-574 (2003).
    25. H. L. Lin, T. L. Yu, L. N. Huang, L. C. Chen, K. S. Shen, G. B. Jung, “Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications”, J. Power Sources, Vol. 150, pp. 11-19 (2005).
    26. W. H. Lizcano-Valbuena, V. A. Paganin , C. A. P. Leite, F. Galembeck, E. R. Gonzalez, “Catalysts for DMFC : Relation between Morphology and Electrochemical Performance”, Electrochim. Acta, Vol. 48, pp. 3869-3878 (2003).
    27. M. S. Loffler, H. Natter, R. Hempelmann, K. Wippermann, “Preparation and Characterisation of Pt-Ru Model Electrodes for the Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 3047-3051 (2003).
    28. J. H. Choi, K. W. Park, H. K. Lee, Y. M. Kim, J. S. Lee, Y. E.un Sung, “Nano-composite of PtRu Alloy Electrocatalyst and Electronically Conducting Polymer for use as the Anode in A Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 2781-2789 (2003).
    29. W. H. Lizcano-Valbuena, V. A. Paganin, E. R. onzalez, “Methanol Electro-Oxidation on Gas Diffusion Electrodes Repared with Pt/Ru/C Catalysts”, Electrochim. Acta, Vol. 47, pp. 3715-3722 (2002).
    30. I. Honmaz, T. Toda, “Temperature Dependence of Kinetics of Methanol Electro-oxidation on PtSn Alloys”, J. Electrochem. Soc., Vol.150, pp. 1689-1692 (2003).
    31. J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs”, J. Electrochem. Soc., Vol. 150, pp. 973-978 (2003).
    32. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, “Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B, Vol. 102, pp. 9997-10003 (1998).
    33. S. D. Lin, T. C. Hsiao, “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, J. Phys. Chem., Vol. 103, pp. 97-103 (1999).
    34. T. E. Shubina, M. T. M. Koper, “Quantum-chemical calculations of CO and OH interacting with Bimetallic Surfaces”, Electrochim. Acta, Vol. 47, pp. 3621-3628 (2002).
    35. M. S. Liao, C. R. Cabrera, Y. Ishikawa, “A Theoretical Study of CO Adsorption on Pt, Ru and Pt-M (M = Ru, Sn, Ge) Clusters”, Surf. Sci., Vol. 445, pp. 267-282 (2000).
    36. E. Antolini, J. R. C. Salgado, A. M. dos Santos, E. R. Gonzalez, “Carbon supported Pt–Co Alloys as Methanol-resistant Oxygen Reduction Electrocatalysts for Direct Methanol Fuel Cells”, Applied Catalysis B: Environmental, Vol. 57, pp. 283-290 (2005).
    37. E. Antolini, J. R. C. Salgado, A. M. dos Santos, E. R. Gonzalez, “Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Method as Electrocatalysts for DMFCs”, Electrochem. and Solid-State Letters, Vol. 8, pp. 226-230 (2005).
    38. W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G.Q. Suna, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, “Performance Comparison of Low-temperature Direct Alcohol Fuel Cells with different Anode Catalysts”, J. Power Sources, Vol. 126, pp. 16-22 (2004).
    39. J. H. Choi, K. W. Park, I. S. Park, W. H. Nam, Y. E. Sung, “Methanol Electro-oxidation and Direct Methanol Fuel Cell using Pt/Rh and Pt/Ru/Rh Alloy Catalysts”, Electrochim. Acta, Vol. 50, pp. 787-790 (2004).
    40. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, “Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B, Vol. 107, pp. 6292-6299 (2003).
    41. S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, “Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 149, pp. 1299-1304 (2002).
    42. M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on Methanol or Reformate Gas”, Electrochim. Acta, Vol. 43, pp. 3637-3644 (1998).
    43. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, L. Daza, “Development and Performance Characterization of New Electrocatalyst for PEMFC”, J. Power Sources, Vol. 106, pp. 206-214 (2002).
    44. M. Kishida, K. Umakoshi, J. I. Ishiyama, H. Nagata, K. Wakabayashi, “Hydrogenation of Carbon Dioxide over Metal Catalysts prepared using Microemulsion”, Catal. Today, Vol. 29, pp. 355-359 (1996).
    45. G. Neri, C. Milone, A. Donato, L. Mercadante, A. M. Visce, “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol., Vol. 60, pp. 83-88 (1994).
    46. G. Neri, C. Milone, S. Galvagno, A. P. J. Pijpers, J. Schwank, “Characterization of Pt-Sn/carbon Hydrogenation Catalysts”, Applied Catalysis A: General, Vol. 227, pp. 105-115 (2002).
    47. A. E. Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo, “Bimetallic Pt-Sn catalysts supported on activated carbon.Ⅱ. CO oxidation”, Catalysis Today, Vol. 62, pp. 337-346 (2000).
    48. A. Honji, T. Mori, Y. Hishinuma, “Platinum Dispersed on Carbon Catalyst for a Fuel Cell: A Preparation with Sorbitan Monolaurate”, J. Electrochem. Soc., Vol. 137, pp. 2084-2088 (1990).
    49. 林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科技大學化學工程系碩士論文 (2002)。
    50. S. Wasmus, W. Vielstcich, “Methanol Oxidation at Carbon Supported Pt ”, J. Appl. Electrochem., Vol. 23, pp. 120-124 (1993).
    51. J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan, S. A. Weeks, “Porous Carbon Anodes For The Direct Methanol Fuel Cell-Ⅰ. The Role Of The Reduction Method For Carbon Supported Platinum Electrodes”, Electrochimica Acta, Vol .35, pp. 199-207 (1990).
    52. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, “Anovel Route to Prepare Stable Pt-Ru/C Electrocatalysts for Polymer Electrolyte Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 255-262 (2002).
    53. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, “Investigation of A Carbon-supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells”, J. Power Sources, Vol. 55, pp. 159-166 (1995).
    54. H. E. Van Dam, H. Van Bek kum, “Preparation of Platium of Activated Carbon”, J. Catalysis, Vol. 131, pp. 335-349 (1991).
    55. R. Pattabiraman, “Preparation of Highly Dispersed Platinum Catalysts For Methanol Fuel Cells”, Bulletin of Electrochemistry, Vol. 20, pp. 352-355 (1993).
    56. R. Pattabiraman, “Development of Playinum-Ruthenium Alloy Electrocatalysis for Direct Oxidation of Methanol in Fuel Cells”, Bull. Electrochem., Vol. 3, pp. 348-351 (1993).
    57. P. Argyropoulos, K. Scott, W. M. Taama, “Gas Evolution and Power Performance in Direct Methanol Fuel Cells”, J. Appl. Electrochem., Vol. 29, pp. 663-671 (1999).
    58. J. Cruickshank, K. Scott, “The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell”, J. Power Sources, Vol. 70, pp. 40-47 (1998).
    59. T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”, J. Electrohem. Soc., Vol. 136, pp. 1594-1603 (1989).
    60. 陳慕辰,“直接甲醇燃料電池陰陽兩極之阻抗分析”,國立成功大學化學工程系碩士論文 (2004)。
    61. T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer electrolyte fuel cell model”, J. Electrohem. Soc., Vol. 138, pp. 2334-2342 (1989).
    62. H. Dohle, J. Divisek, R. Jung, “Process engineering of the Direct Methanol Fuel Cell”, J. Power Sources, Vol. 86, pp. 469-477 (2002).
    63. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,台北市,8-5頁 (2004)。
    64. T. Freelink, W. Visscher, J. A. R.n Veen, “On the role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt”, Surf. Sci., Vol.335, pp. 353-360 (1995).
    65. R. Hodgson, H. Oman, “Battery data for use in expert systems”, J. Power Sources, Vol. 17, pp. 171-180 (1998).
    66. J. H. Choi, K.W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni and Pt/Ru/Ni Anode Electrocatalysts at different Temperature for DMFCs”, J. Electrochem. Soc., Vol. 150, pp. 973-978 (2003).
    67. J. T. Muller, P. M. Urban, ”Impedance studies of Direct Methanol Fuel Cell Anodes”, J. Power Sources, Vol. 84, pp. 157-160 (1999).
    68. J. C. Amphlett, B. A. Peppley, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell”, J. Power Sources, Vol. 96, pp. 204-213 (2001).
    69. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, JOHN WILEY & SONS, INC., p. 27 (2001).
    70. J. S. Newman, “Electrochemical Systems”, Englewood Cliffs, Prentice-Hall, Inc., pp. 380-382 (1991).
    71. 薛志鴻,“質子交換模型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文 (2003)。
    72. Y. T. Kho, S. Srinivasan, “Mass Transport Phenomens in Proton Exchange Membrane Fuel Cells Using O2/He, O2/Ar and O2/N2 Mixture Ⅱ Theoretical Analysis”, J. Electrochem. Soc., Vol. 141, pp. 2089-2099 (1994).
    73. M. D. Bernardi, W. V. Mark, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol. 139, pp. 2477-2491 (1992).
    74. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. springer, S. Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., Vol. 140, pp. 1041-1047 (1993).
    75. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R. Tunold, “Influence of Diffusion Layer Properties on Low Temperature DMFC”, J. Power Sources, Vol. 127, pp. 187-196 (2004).
    76. K. W. Park, B. K. Kwon, J. H. Choi, I. S. Park, Y. M. Kim, Y. E. Sung, “New RuO2 and Carbon–RuO2 Composite Diffusion Layer for use in Direct Methanol Fuel Cells”, J. Power Sources, Vol. 109, pp. 439-445 (2002).
    77. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, D. Stolten, “Novel Method for Investigation of Two-phase Flow in Liquid Feed Direct Methanol Fuel Cells using an Aqueous H2O2 Solution”, J. Power Sources, Vol. 125, pp. 1-9 (2004).
    78. J. Kim, S. M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc., Vol. 142, pp. 2670-2674 (1995).
    79. J. Gmehling, U. Onken, W. Arlt, “Vapor-liquid Equilibrium Data Collection”, Main: Dechema, Frankfurt, Vol. 1 part 1a, pp. 58-60 (1981).
    80. W. Ernest Flick, “Industrial Solvent Handbook”, U.S.A.: Noyes Data Corp., Park Ridge, N.J., p. 292 (1991).

    下載圖示 校內:2007-08-11公開
    校外:2008-08-11公開
    QR CODE