簡易檢索 / 詳目顯示

研究生: 吳俊德
Wu, Chun-Te
論文名稱: 應用DNA-RGA 計算演算法於類PID 模糊控制器之設計
PID-Like Fuzzy Controller Design Using DNA-RGA Computing Algorithm
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 75
中文關鍵詞: 去氧核糖核酸模糊控制器病毒
外文關鍵詞: DNA, fuzzy controller, Enzyme, Virus
相關次數: 點閱:85下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個以實數型基因編碼之去氧核糖核酸演算法(DNA-RGA Computing Algorithm)。此演算方法係結合基因與DNA演算法之特點,去設計模糊控制器以改善整個迴授系統響應。此方法特點在於演化過程中不只對於參數進行最佳化,也能對系統架構做出最合適的選擇。此概念有別於其它演化演算法只專注於數值的搜尋。DNA是由四種不同鹼基組合而成之染色體序列,其中更包含大量遺傳資訊並透過世代演化進行傳承。DNA演算法擁有基因演算法之特性,包括選擇、交配、突變與精英策略等運算機制。除此之外,DNA擁有包含酶(Enzyme)與病毒(Virus)二種突變方式,藉以調整系統結構。
    為了驗證所提方法之優點,將類PID模糊控制器四種架構編碼成染色體序列,利用所提出之演算進行演化。針對不同系統與對應不同的控制目標時,演算過程將從中選擇合適之控制器架構並同時對控制器之參數進行最佳化。最後,藉由模擬結果證明此方法之有效性與可行性。

    In this thesis, a novel computing methodology called DNA-RGA computing algorithm,
    which combines the characteristics of DNA and Genetic algorithm, is proposed to design
    fuzzy controller and to improve the performance of systems. This algorithm presents a new
    idea to optimize the parameters and structure of controller simultaneously.
    DNA is known to be a chromosome string, which consists of four kind of chemical
    components and is able to transmit huge amount of hereditary information from generation
    to generation. DNA computing algorithm involves the basic and traditional operations of
    GA algorithms such as selection, crossover, mutation, and elite strategy. In addition, the
    DNA has an extra operational mechanism that includes enzyme and virus operators to
    provide flexibility for the structure of systems.
    In order to explore the major merit of DNA-RGA computing algorithm in the field of
    control systems, this thesis presents a variable PID-Like fuzzy controller design based on
    aforementioned methodology to attain the proper type of controllers, such as P-Like,
    PD-Like, PI-Like, or PID-Like fuzzy controllers, corresponding to different plants. Finally,
    the simulation results demonstrate the validity and feasibility of the proposed
    methodology.

    中文摘要 I Abstract II Acknowledgement III Contents IV List of Figures VII List of Tables IX Chapter 1. Introduction 1.1 Motivation ...................................................1 1.2 Thesis Organization .................................. .......4 Chapter 2. Overview of the Biological Feature of DNA 2.1 Introduction of DNA...........................................6 2.1.1 Central Dogma of DNA........................................9 2.1.2 Genetic Code...............................................10 2.2 Biologically Computational Methodology of DNA ...............12 2.2.1 Coding Scheme .............................................13 2.2.2 Evaluation.................................................14 2.2.3 Reproduction...............................................14 2.2.4 Crossover .................................................15 2.2.5 Mutation ..................................................16 2.2.6 Frameshift Mutation................................ .......17 2.2.7 Summary....................................................18 Chapter 3. PID-Like Fuzzy Controllers 3.1 Introduction ................................................20 3.2 Fuzzy Logic Controller ......................................22 3.2.1 Fuzzification Interface (FI)...............................22 3.2.2 Decision Making Logic (DML) ...............................24 3.2.3 Knowledge Base (KB)........................................24 3.2.4 Defuzzification Interface (DFI) ...........................26 3.3 PID-Like Fuzzy Controller ...................................27 3.3.1 P-Like Fuzzy Controller ...................................30 3.3.2 PD-Like Fuzzy Controller ..................................31 3.3.3 PI-Like Fuzzy Controller...................................33 3.4.4 PID-Like Fuzzy Controller .................................34 Chapter 4. Evolution of DNA-RGA Computing Algorithm 4.1 Introduction ................................................39 4.2 DNA-RGA Coding Scheme for PID-Like Fuzzy Controller .........40 4.3 Design of Controllers Using DNA-RGA Computing Algorithm .....45 4.3.1 Evaluation of DNA-RGA .....................................45 4.3.2 Reproduction of DNA-RGA....................................45 4.3.3 Crossover of DNA-RGA ......................................45 4.3.4 Mutation of DNA-RGA........................................46 4.3.5 Frameshift Mutation of DNA-RGA ............................47 4.3.6 Elite Policy...............................................49 4.3.7 Immigration Policy.........................................49 Chapter 5. Simulation and Results 5.1 Introduction ................................................51 5.2 Definition of Fitness Function ..............................52 5.3 Application .................................................54 5.3.1 Second Order System .......................................54 5.3.2 Inverted Pendulum System...................................62 5.3.3 Chaotic System(Duffing–Holmes system) ....................65 5.4 Summary .....................................................67 Chapter 6. Conclusion and Future Work 6.1 Conclusion...................................................69 6.2 Future Work..................................................70 References.......................................................71

    [1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithm,
    Third edition, the MIT press, 2009.
    [2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, “Equation of
    state calculation by fast computing machines,” Journal of Chemical Physics, vol. 21,
    pp. 1087–1092, 1953.
    [3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated
    Annealing,” Science, vol. 220, pp. 671–680, 1983.
    [4] J. H. Holland, Adaptive in Natural and Artificial Systems, Ann Arbor, MI Uniu.
    Mich. Press, 1975.
    [5] C. Darwin, The Origin of Species, J. Murray, London, 1975.
    [6] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,
    Addison-Wesley, 1989.
    [7] K. K. Dinesh, S. K. Gupta, and D. N. Saraf, “Multi-objective optimization of fuel oil
    blending using the jumping gene adaptation of genetic algorithm,” Fuel Processing
    Technology, vol. 88, no. 1, pp.51–63, 2007.
    [8] G. Jeon, R. L. Herman, and Y. S. Jae, “A vehicle routing problem solved by using a
    hybrid genetic algorithm,” Computers & Industrial Engineering, vol. 53, no. 4, pp.
    680-692, 2007.
    [9] X. Luo, Q. Y. Wen, and G. Fieg, “A hybrid genetic algorithm for synthesis of heat
    exchanger networks,” Computers & Chemical Engineering, vol. 33, no. 6, pp.
    1169-1181, Jun. 2009.
    [10] L. De Giovanni and F. Pezzella, “An improved genetic algorithm for the distributed
    and flexible job-shop scheduling problem,” European Journal of Operational
    Research, vol. 200, no. 2, pp. 395–408, Jan. 2010.
    [11] J. J. Hopfield and D. Tauk, “Computing with neural circuits: A model,” Science, vol.
    233, pp.624–633, 1986.
    [12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf.
    Neural Networks, pp. 1942–1948, 1995.
    [13] J. E. Hunt and D. E. Cooke, “Learning using an artificial immune system,” Journal
    of Network and Computer Applications, vol. 19, pp. 189–212, 1996.
    [14] L. Adleman, “Molecular computation of solutions to combinatorial problems,”
    Science, vol. 266, pp. 1021–1024, 1994.
    [15] Q. Ouyang, P. Kaplan, S. Liu, and A. Libchaber, “DNA solution of the maximal
    clique problem,” Science, vol. 278, pp. 446–449, 1997.
    [16] R. Braich, N. Chelyapov, C. Johnson, P. Rothemund, and L. Adleman, “Solution of
    a 20-variable 3-SAT problem on a DNA computer,” Science, vol. 296, pp. 499–502,
    2002.
    [17] J. Y. Lee, S. Y. Shin, T. H. Park and B. T. Zhang, “Solving traveling salesman
    problems with DNA molecules encoding numerical values,” BioSystems, vol.78, pp.
    39–47, 2004.
    [18] J. Tao and N. Wang, “DNA computing based RNA genetic algorithm with
    applications in parameter estimation of chemical engineering processes,” Computers
    and Chemical Engineering , vol. 31, no. 12, pp.1602–1618, 2007.
    [19] T. Yoshikawa, H. Kawanaka, and S. Tsuruoka. “A study of parallel GA using
    DNA coding method for acquisition of fuzzy control rules,” in Proc. IEEE Int. Conf..
    Genetic and Evolutionary Computation Conference (GECCO-2000), pp. 431–436,
    2000.
    [20] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “The effects of combination of DNA
    coding method with Pseudo-Bacterial GA,” in Proc. IEEE Int. Conf. Evolutionary
    Computation, pp. 285–290, 1997.
    [21] Y. Ding and L. Ren, “A new DNA-based evolutionary algorithm with application to
    the design of fuzzy controllers,” in Proc. IEEE Int. Conf. Evolutionary Computation,
    vol. 2, pp. 1982–1987, 2002.
    [22] H. C. Huang, C. C. Tsai, and T. S. Wang, “Kinematics Motion Planning of an
    Omnidirectional Mobile Manipulator Using DNA Algorithm,” in Proc. IEEE
    IECON 2007, pp. 2706–2711, 2007.
    [23] K. C. Suang, X. Peng, Vadakkepat, and T. H. Lee, “DNA coding in evolutionary
    computation,” in Proc. IEEE Int. Conf. on Cybernetics and Intelligent Systems 2004,
    vol. 1 , pp. 279–284.
    [24] Y. Zhu, Y. S. Ding, W. Li, and L. A. Zadeh, “DNA Algorithm of Image Recognition
    and its Application,” in Proc. IEEE Int. Conf. on Information Reuse and Integration,
    pp. 375–379, 2006.
    [25] K. Kiguchi, K. Watanabe, and T. Fukuda, “Trajectory planning of mobile robots
    using DNA computing,” in Proc. IEEE Int. Conf. on Computational Intelligence in
    Robotics and Automation, pp. 380–385, 2001.
    [26] C. L. Lin, J. R. Lin, H. Y. Jan, and N. J. Lin, “Optimal path planning on 3D space
    using a DNA computing algorithm,” in Proc. IEEE Int. Symposium. on Industrial
    Electronics, 2004, vol. 1, pp. 253–258.
    [27] Y. Huang, X. Chen, and Y. Hu, “Optimization for Parameter of PID Based on DNA
    Genetic Algorithm,” in Proc. IEEE Int. Conf. on Neural Networks and Brain, 2005.
    ICNN&B '05, vol. 2, pp. 859–861.
    [28] H. Y. Jan, C. L. Lin, and T. S. Hwang, “Self-organized PID control design using
    DNA computing approach,” J. China. Inst. Eng., vol. 29, no. 2. pp. 251-261, 2006.
    [29] J. J. Kim and J. J. Lee, “PID controller design using double helix structured DNA
    algorithms with a recovery function,” Artificial Life and Robotics, vol. 12, no. 1–2,
    pp. 241–244, 2008.
    [30] C. H. Huang, H. Y. Jan, C. L. Lin, and C. S. Lee, “System identification: DNA
    computing approach,” ISA Trans, vol. 48, no. 3, pp. 254–263, 2009.
    [31] J. D. Watson and F. N. C Crick, “Molecular structure of nucleic Acids: A Structure
    for Deoxyribose Nucleic Acid,” Nature, vol. 171, pp. 737, 1953.
    [32] The New Genetics, NIH Publication U.S., Revised No. 07-662, 2006.
    [33] S. Mader, Biology, 8/e, McGraw-Hill, 2004.
    [34] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.
    [35] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plant,” Proc.
    IEE, vol.121, no.12, pp.1585–1588, 1974.
    [36] Y. T. Su, C. Y. Hu, M. F. Lu, C. M. Chang, S. W. Lai, S. H. Liu, and T. H. S. Li,
    “Design and implementation of SOPC based image and control system for
    HuroCup,” J. of Harbin Institute Tech, vol. 15, pp. 41–46, Sep. 2008.
    [37] T. H. S. Li , S. H. Tsai, and M. Y. Hsiao, “Robust fuzzy control for a class of
    time-delay fuzzy bilinear systems with an additive disturbance,” International
    Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 3, pp.
    315–322, Mar. 2009.
    [38] J.R. Cano, F. Herrera, and M. Lozano, “On the combination of evolutionary
    algorithms and stratified strategies for training set selection in data mining,” Applied
    Soft Computing, pp. 323–332, 2006.
    [39] H. R. Li and H. B. Gatland, “Conventional Fuzzy Controller and Its Enhancement,”
    IEEE Trans. Systems, Man, and Cybernetics-Part B, vol. 26, no. 5, pp. 791–797, Oct.
    1996.
    [40] Y. P. Kuo and T. H. S. Li, “GA-Based fuzzy PI/PD Controller for automotive active
    suspension system,” IEEE Trans. Industrial Electronics, vol. 46, no. 6, pp.
    1051–1056, Dec. 1999.
    [41] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of
    nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy System, vol. 4, no.
    1, pp. 14–23, 1996.
    [42] H. T. Yau, C. K. Chen, and C. L. Chen, “Sliding mode control of chaotic systems
    with uncertainties,” International Journal of Bifurcation and Chaos, vol. 10, pp.
    1139–1147, 2000.
    [43] J. J. Yang, “Design of robust controllers for uncertain chaotic systems with nonlinear
    inputs,” Chaos, Solutions and Fractal, vol. 19, pp. 541–547, 2004.

    下載圖示 校內:2013-08-27公開
    校外:2015-08-27公開
    QR CODE