| 研究生: |
張裕昀 Chang, Yu-yun |
|---|---|
| 論文名稱: |
製備堇青石與氮化鋁複合材料之燒結性質研究 On the Preparation and Sintering Properties of Cordierite and Aluminum Nitride Composites |
| 指導教授: |
申永輝
D.SHEN 溫紹炳 Wen, Shaw-Bing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 熱傳導係數 、溶膠–凝膠法 、氮化鋁 、堇青石 |
| 外文關鍵詞: | thermal conductivity, sol-gel, AlN, cordierite |
| 相關次數: | 點閱:60 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
堇青石(2MgO•2Al2O3•5SiO2) 是一種重要的陶瓷材料,因具有低熱膨脹係數、低介電係數、高電阻係數,在工業上的用途非常廣泛,近年更是電子工業上一個極具潛力的材料。
本研究以硝酸鎂、硝酸鋁、TEOS(矽酸乙酯)為起始原料,溶膠–凝膠法製備堇青石粉末。為了提高堇青石熱傳導性質,以濕混方式分別添加0 wt%~30 wt%氮化鋁粉末,由於氮化鋁於高溫下容易氧化生成氧化鋁,本研究以碳黑與氮化硼作為空氣阻隔劑,有別於一般以還原氣氛爐燒結之製程。此外,由於氮化鋁燒結溫度過高且堇青石燒結不易,故本研究添加氧化鉍為燒結助劑,以期製備緻密之堇青石–氮化鋁陶瓷燒結體。
研究結果顯示煆燒溫度對堇青石粉末粒徑影響不大,主要造成相變的產生,μ–堇青石相變為α–堇青石的溫度約為1300℃。添加10 wt%氮化鋁於1250℃持溫6小時之燒結體可得到最高相對密度96.65%、線收縮率27.27%。堇青石–氮化鋁燒結體介電係數均介於4~5,符合低介電材料需求,添加15 wt%氮化鋁之燒結體可得到最佳品質因子2592.7(MHz)。添加10 wt%氮化鋁於1350℃持溫6小時之燒結體可得到最高熱傳導係數,其值為8.14W/mK。
Cordierite is an important ceramic material and widely used in industry for its low thermal expansion coefficient, low dielectric constant, and high resistivity. In recent years, cordierite is regarded as a greatly potential material in electronic industry. However its thermal conductivity is too low to limit its application. Thesis studied the composite of cordierite and aluminum nitride to improve thermal conductivity properties of cordierite.
The cordierite was synthesized with magnesium nitrate, aluminum nitrate, and tetraethyl orthosilicate by sol-gel method. The composite was composed by cordierite mixing with 0 wt%~30 wt% AlN in to promote the thermal conductivity. The ceramic body was buried with carbon black and boron nitride to avoid air oxidation of AlN in high temperature. This thesis also used bismuth oxide as sintering aids to decrease the sintering temperature of AlN and cordierite composites.
Results showed the calcination temperature is was influential not only to the grain size of cordierite but also to the phase transition. The temperature μ-cordierite phase transited to α-cordierite phase was 1300℃. The composites with 10 wt% AlN sintered at 1250℃ for 6 h had the highest relative density of 96.7%, and linear shrinkage 27.3%. All composites had the dielectric constant between 4~5 corresponded with the demand of low dielectric constant materials. The composites with 15 wt% AlN had the best quality factor 2592.7(MHz). The composites with 10 wt% AlN sintered at 1350℃ or 6 h had the best thermal conductivity of 8.14w/mK.
1. I. Jankovic–Castvan, S. Lazarevic, B. Jordovic, R. Petrovic, D.Tanaskovic, and Dj. Janackovic, “Electrical properties of cordierite obtained by non–hydrolytic sol–gel method.”J. Eur. Ceram. Soc., 27,3659–3661, 2007.
2. D. Pal, A. K. Chakraborty, and Suchitra Sen, “The synthesis, characterization, and sintering of sol–gel derived cordierite ceramics for electronic applications.”J. Mater. Sci., 31, 3995–4005, 1996.
3. R. Morrell, Proc. Br. Ceram. Soc., 28, 53, 1979.
4. Ann M. Kazakos, Sridhar Komarneni, and Rustum Roy, “Sol–gel processing of cordierite:Effect of seeding and optimization of heat treatment.”J. Mater. Res., Vol. 5, No.5, 1990.
5. Susanta Kumar Saha, and P. Pramazik, “Aqueous sol–gel synthesis of cordierite and cordierite–zirconia composite powders.”J. Mater. Sci., 30, 2855–2858, 1995.
6. Z. M. Shi, K. M. Liang, Q. Zhang, and S. R. Gu, “Effect of cerium addition on phase transformation and microstructure of cordierite ceramics prepared by sol–gel method.”J. Mater. Sci., 36, 5227–5230, 2001.
7. 鄭淼晶,“以溶膠凝膠法製備堇青石粉末及其燒結體之性質研究”國立成功大學碩士論文,2004。
8. I. Jankovic Castvana, S. Lazarevic, B. Jorvodic, R. Petrovic, and Janackovic, “Electrical properties of cordierite obtained by non–hydrolytic sol–gel method.”J. Eur. Ceram. Sci., 27, 3659–3661, 2007.
9. J. T. Oh., P. Hing, H. S. Fong, S. F. Chin and C. L.Zeng, “The processing of cordierite glasses containing AlN.”J. Mater. Pro. Tech., 63, 851–854, 1997.
10. J. T. Oh, P. Hing, and H. S. Fong, “Effect of sintering temperature mismatch on the diffusivity of cordierite–AlN composite.”J. Mater. Pro. Tech., 89–90, 497–500, 1999.
11. J. Ma, K. Liao, and P. Hing, “Effect of aluminum nitride on the properties of cordierite.”J. Mater. Sci., 35, 4137–4141, 2000.
12. Guo–hau Chen, and Xin–yu Liu, “Influence of AlN addition on thermal and mechanical properties of cordierite–based glass/ceramiccomposites”J. Mater. Pro. Tech., 190, 77–80, 2007.
13. Reser M. K., “Phase diagrams of ceramics.”J. Am. Ceram. Soc., Fig. 712, 1964.
14. 鄭武輝等譯,“工業陶瓷”徐氏基金會出版社,1985。
15. Karkhanavala M. D., and F. A. Hummel, “Reactions in the system Li2O–MgO–Al2O3–SiO2:Ⅰ, The cordierite–spodumene join”J. Am. Ceram. Soc., Vol. 36, No. 12, 393–397, 1953.
16. Glendenning, M. D., and W. E. Lee, “Microstructural development on crystallizing hot–pressed pellets of cordierite melt–derived glass containing Bi2O3 and P2O5.”J. Am. Ceram. Soc., 79[3], 705–713, 1996.
17. Miyashiro A., “Cordierite–indialite reactions.”J. Am. Sci., 255, 43–62, 1957.
18. Andrew Putnis, “Introduction to mineral science.”Cambridge University Press, 1992.
19. 賴耿陽編撰,“構造材料用陶瓷”復漢出版社印行,2001。
20. 汪健民等,“陶瓷技術手冊”經濟部技術部、中華民國粉末冶 金學會、中華民國產業發展協進會出版,781–784,1994。
21. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt, Solid States Ionics, 89, 179, 1996.
22. A. Laarif and F. Theobald, Solid States Ionics, 21, 183, 1986.
23. G. Mairesse, “In fast ion transport in solids.”ed. B. Scrosati, Kluver, Amsterdam, 271, 1993.
24. T. Tskahashi, and H. Iwahara, Mater. Res. Bull., 13, 1447, 1978.
25. T. Takahashi, T. Esaka, and H. Iwahara, J. Appl. Electrochem., 7, 299, 1977.
26. R. L. Coble, “Sintering crystalline solids:Ⅱ, Experimental test of diffusion models in powder compacts.”J. Appl. Phys., 32, 793–799, 1961.
27. M. F. Ashby, “A first report on sintering diagrams.”Acta. Metal., 22, 278–289, 1974.
28. W. D. Kingery, M. D. Marasimham, “Densification during Sintering presence of a liquid phase.”J. Apply. Phys., 31[3], 307, 1959.
29. R. M. German, “Liquid phase Sintering.”Plenum Press inc, 6–8, 1985.
30. W. D. Kingery, “Introduction to ceramics.”2nd edition, John Wiley and Sons, New York, 1976.
31. A. J. Moulson, J. M. Herbert, “Electroceramics–Materials‧Properties‧Applications.”Chapman and Hall, London, 1990.
32. R. C. Buchanan, “Materials for electronics:Processing, properties and application.”Marcel Dekker, Inc., 1986.
33. S. J. Lee, and W. M. Kriven, Ibid. 81(10), 2605, 1998.
34. Awano M., H. Takagi, Y. Kuwahara, “Grinding effects on systhesis and sintering of cordierite.”J. Am. Ceram. Soc., 75(9), 2535–2540, 1992.
35. R. G. Chandran, and K. C. Patil, “Combustion synthesis , Characterization, sintering and microstructure of cordierite.”J. Br. Ceram. Soc., 92(6), 239–245, 1993.
36. M. A. Camerucci, G. Urretavizcaya, M. S. Castro, and A. L. Cavalieri, “Electrical properties and thermal expansion of cordierite and cordierite–mullite materials.”J. Eur. Ceram. Soc., 21, 2917–2923, 2001.
37. H. Suzuki, H. Saito, and T. Hayashi, “Thermal and electric properties of alkoxy–derived cordierite ceramic.”Vol. 9, 365–371, 1992.
38. J. M. Herbert, “Ceramics dielectrics and capacitors.”Gordon and Breach Science Publishers, 1985.