| 研究生: |
蘇昱銘 Su, Yu-Ming |
|---|---|
| 論文名稱: |
來自北台灣之海洋異營性微藻分離株:Aurantiochytrium sp. strain BL10之生物特性研究 Biological characterization of a heterotrophic marine microalga - Aurantiochytrium sp. strain BL10 isolated from northern Taiwan |
| 指導教授: |
陳逸民
Chen, Yi-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | BL10 、生活史 、阿米巴細胞 、基因體大小 、套數 |
| 外文關鍵詞: | BL10, life cycle, amoeboid cell, genome size, karyotype |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
BL10是一個來自台灣北部河口的異營性微藻分離株,具有許多異於其他微細藻類的特性:1. 廣鹽性 (euryhaline),在2 - 35 ppt的鹽度範圍內有最佳的生長速率。2. 嗜糖性 (saccharophilic),其生長不受高濃度葡萄糖 (140 gL-1) 的抑制。3. 油脂性 (oleaginous),含油量可達乾重的80%。4. 容易培養,以0.01gL-1接種,培養72小時後,可達120 gL-1的生物量。5. 有別於標準路徑的長鏈不飽和脂肪酸生合成路徑。6. 特殊的生活史,除了營養細胞 (vegetative cell) 外,尚能產生具有游動能力的游走孢子 (zoospore) 以及爬行能力的阿米巴細胞 (amoeboid cell)。因此,或許能將BL10建立為新型的模式生物,用以研究微藻的滲透壓調節、油脂產生及堆積、長鏈不飽和脂肪酸的生合成路徑、以及細胞遷徙等生命現象。然而欲以其為模式生物,必先了解其屬於哪種藻、能否取得全基因體的資料,以及是否容易進行基因操作。
因此,本研究的目的,在於確認BL10的分類地位、評估與分析基因體大小及染色體核型 (karyotype),以及研擬全基因體定序及基因操作的策略。首先以18S rDNA的序列與已知Aurantiochytrium以及其他破囊壺菌品系進行親緣關係分析時,發現BL10會與已知的Aurantiochytrium品系形成單系類群 (monophyletic group) 同時和A. limacinum的type species SR21,而非A. mangrovei的type species RCC893有較近似的親緣關係。BL10容易觀察到阿米巴細胞,以及阿米巴細胞在停止移動後不會立即形成游走孢子的形態特徵也和A. limacinum近似,然而BL10不會形成孢子囊,以及單一營養細胞形成孢子囊的特徵與A. limacinum迥異。因此本研究仍暫時將BL10定名為Aurantiochytrium sp.。
此外,我們利用添加0.2% Triton X-100的方法,證明阿米巴細胞為BL10的三種細胞中 (另兩種為游走孢子及營養細胞) 細胞壁最薄 (或唯一缺乏細胞壁) 的一種,同時在特定培養條件 (例如於培養基內添加0.9%硫酸鈉取代海水的作法) 以及特定培養時間 (對數生長期;接種12小時前後) 有較高比例的阿米巴細胞出現 (占總細胞之16%),可作為利用電穿孔法,將外來基因或雙股RNA送入BL10的勝任細胞來使用。
後續以流式細胞儀,搭配基因體12 Mbp的酵母菌 (Saccharomyces cerevisiae strain W303-1A) 作為內標準,以DNA的相對螢光強度,換算所得之BL10基因體大小為40.5 Mbp,僅為Chlamydomonas (現行微藻模式生物) 的1/3。並以螢光顯微鏡觀察細胞分裂中期細胞的染色體,發現BL10具有3條染色體的核型,並以螢光原位雜交證實為其單套生物體,說明有機會能利用次世代的定序儀,完成BL10全基因組的定序。
BL10 is a marine heterotrophic microalga that isolated from the stream outlet of northern Taiwan, it has many unique characteristics, including (1) euryhaline, it able to grow within the salinity range from 2 to 35 ppt; (2) saccharophilic, its growth not inhibited when the cell cultured in medium containing high glucose concentrations (140 gL-1); (3) oleaginous, its oil accumulated more than 80% of the dry biomass; (4) culture easily, the biomass can reach 120 gL-1 at 72 hour that inoculated with the initial cell concentrations of 0.01gL-1; (5) unique lipid metabolism pathway, and (6) special life cycle in BL10 that contains mobile zoospores and irregular-shaped amoeboid cells (the cell with crawling ability), making BL10 a nice candidate to become a new model organism, which can be used to study osmotic regulation, the production and accumulation of lipid, the long chain polyunsaturated fatty acids synthetic pathway of microalgae, and cell migration. However, the available information is insufficient to establish a model organism, including (1) the taxonomy of BL10 (2) the genome size and karyotype of BL10 (3) gene manipulation of BL10. Therefore, the purpose of this study is to resolve the above issues.
First, in order to identify the species of BL10, the 18S rDNA sequence were used to construct the phylogenetic tree. The results of a molecular phylogenetic analysis showed that BL10 belongs to the genus Aurantiochytrium and closely relates to A. limacinum. From the results of morphological observation, we found that BL10 can be easily observed the formation of amoeboid cells, and the amoeboid cells can divide into numerous zoospores after the cell settlement down. The above results showed that BL10 is similar to A. limacinum, while BL10 is unable to form the sporangium that significant different with A. limacinum.However, we consider that these results can not support the taxonomy of BL10.
On the other hand, we found that amoeboid cell with thin cell wall (or without cell wall), and the percentage of amoeboid cells could be enhanced up to 16% of total cells by regulating the medium composition and acquired at specific time. Those results provide information that it's possible to do gene transformation or dsRNA delivery for genomic functional analysis of BL10.
Then we established the genome size by flow cytometry, and used Saccharomyces cerevisiae W303-1A (12 Mbp) as control to calculate the genome size of BL10 (40.5 Mbp) that based on FL3 intensity. And in the karyotype analysis experiment, we used 8-hydroxyquinoline to arrest the cell cycle at the metaphase, and the chromosomes of BL10 were stained with DAPI and observed by fluorescence microscopy. The experimental results showed that BL10 has three chromosomes. Then we proved that the BL10 is a haploid using fluorescence in situ hybridization with a 45S rDNA probe. According to our results, we believe that the work of whole genome sequencing is possible.
Alderman, D.J., Harrison, J.L., Bremer, G.B. & Jones, E.B.G. (1974). Taxonomic revisions in the marine biflagellate fungi: The ultrastructural evidence. Mar Biol, 25: 345-357.
Almeida, A.J., Matute, D.R., Carmona, J.A., Martins, M., Torres, I., Mcewen, J.G., Restrepo, A., Leao, C., Ludovico, P. & Rodrigues, F. (2007). Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: Flow cytometry and GP43 sequence analysis. Fung Genet Biol, 44: 25-31.
Amon, J.P. (1978). Thraustochytrids and labyrinthulids of terrestrial, aquatic and hypersaline environments of the Great Salt Lake, USA. Mycologia, 70: 1299-1301.
Amon, J.P. & Perkins, F.O. (1968). Structure of Labyrinthula sp. zoospores. J Eukaryot Microbiol, 15: 543-546.
Anbu, P., Kim, D.U., Jeh, E.J., Jeong, Y.S. & Hur, B.K. (2007). Investigation of the physiological properties and synthesis of PUFAs from thraustochytrids and its electrophoretic karyotypes. Biotechnol Bioproc Eng, 12: 720-729.
Bahnweg, G. & Sparrow, F.K. (1972). Aplanochytrium kerguelensis gen. nov. spec. nov., a new phycomycete from subantarctic marine waters. Arch Microbiol, 81: 45-49.
Bartnicki-Garcia, S. (1968). Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol, 22: 87-108.
Bennett, M.D., Leitch, I.J., Price, H.J. & Johnston, J.S. (2003). Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann Bot, 91: 547-57.
Bolduc, C., Lee, V.D. & Huang, B. (1988). Beta-tubulin mutants of the unicellular green-alga Chlamydomonas reinhardtii. Proc Natl Acad Sci, 85: 131-135.
Bongiorni, L. & Dini, F. (2002). Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquat Microb Ecol, 30: 49-56.
Bongiorni, L., Jain, R., Raghu-Kkumar, S. & Aggarwal, R.K. (2005a). Thraustochytrium gaertnerium sp nov.: a new thraustochytrid stramenopilan protist from mangroves of Goa, India. Protist, 156: 303-315.
Bongiorni, L., Pignataro, L. & Santangelo, G. (2004). Thraustochytrids (fungoid protist): an unexplored component of marine sediment microbiota. Sci Mar, 68: 43-48.
Bongiorni, L., Pusceddu, A. & Danovaro, R. (2005b). Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol, 41: 299-305.
Bremer, G.B. (1995). Lower marine fungi (Labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia, 295: 89-95.
Bremer, G.B. & Talbot, G. (1995). Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar, 38: 37-41.
Cavalier-Smith, T. (1993). Kingdom protozoa and its 18 phyla. Microbiol Rev, 57: 953-994.
Cavalier-Smith, T., Allsopp, M.T.E.P. & Chao, E.E. (1994). Thraustochytrids are chromists, not fungi: 18S rRNA signatures of heterokonta. Microbiol Rev, 346: 387-397.
Chin, H.J., Shen, T.F., Su, H.P. & Ding, S.T. (2006). Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: optimal growth and use as a dietary supplement for laying hens. Aust J Agr Res, 57: 13-20.
Cires, E., Cuesta, C., Peredo, E.L., Revilla, M.A. & Prieto, J.a.F. (2009). Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Systemat Evol, 281: 193-208.
Claes, H. (1975). Influence of concanavalin A on autolysis of gametes from Chlamydomonas reinhardii. Arch Microbiol, 103: 225-230.
Darley, W.M., Porter, D. & Fuller, M.S. (1973). Cell wall composition and synthesis via golgi-directed scale formation in the marine eucaryote, Schizochytrium aggregatum , with a note on Thraustochytrium sp. Arch Microbiol, 90: 89-106.
Dhar, P. & Kaur, G. (2009). Optimization of different factors for efficient protoplast release from entomopathogenic fungus Metarhizium anisopliae. Ann Microbiol, 59: 183-186.
Dolezel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M.A., Nardi, L. & Obermayer, R. (1998). Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot, 82: 17-26.
Fan, K.W., Vrijmoed, L.L.P. & Jones, E.B.G. (2002). Physiological studies of subtropical mangrove thraustochytrids. Bot Mar, 45: 50-57.
Farnier, C., Krief, S., Blache, M., Diot-Dupuy, F., Mory, G., Ferre, P. & Bazin, R. (2003). Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord, 27: 1178-1186.
Fields, S. & Johnston, M. (2005). Whither model organism research? Science, 307: 1885-1886.
Freeman, M. (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell, 87: 651-660.
Gaertner, A. (1981). A new marine phycomycete, Schizochytrium minutum, sp. nov. (Thraustochytriaceae) from saline habitats. Veroff Inst Meeresforsch Bremerh, 19: 61-69.
Ganal, M.W., Lapitan, N.L.V. & Tanksley, S.D. (1988). A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum). Mol Gen Genet, 213: 262-268.
Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H. & Oliver, S.G. (1996). Life with 6000 genes. Science, 274: 546, 563-567.
Goldstei, S. (1973). Zoosporic marine fungi (Thraustochytriaceae and Dermocystidiaceae). Annu Rev Microbiol, 27: 13-26.
Guarente, L. & Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature, 408: 255-262.
Guerin, M., Huntley, M.E. & Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol, 21: 210-216.
Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S. & Metz, G. (2006). Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41: 739-747.
Hinostroza, G.C., Huberman, A., Delalanza, G. & Monroyruiz, J. (1997). Pigmentation of the rainbow trout (Oncorhynchus mykiss) with oil-extracted astaxanthin from the langostilla (Pleuroncodes planipes). Arch Latinoam Nutr, 47: 237-241.
Hites, R.A., Foran, J.A., Carpenter, D.O., Hamilton, M.C., Knuth, B.A. & Schwager, S.J. (2004). Global assessment of organic contaminants in farmed salmon. Science, 303: 226-229.
Honda, D., Yokochi, T., Nakahara, T., Erata, M. & Higashihara, T. (1998). Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res, 102: 439-448.
Huang, J., Aki, T., Yokochi, T., Nakahara, T., Honda, D., Kawamoto, S., Shigeta, S., Ono, K. & Suzuki, O. (2003). Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biol, 5: 450-457.
Kazama, F.Y. (1974). Ultrastructure of Thraustochytrium sp. zoospores. IV. External morphology with notes on the zoospores of Schizochytrium sp. Mycologia, 66: 272-280.
Kris-Etherton, P.M., Harris, W.S. & Appel, L.J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 106: 2747-2757.
Langley, C.H., Crepeau, M., Cardeno, C., Corbett-Detig, R. & Stevens, K. (2011). Circumventing heterozygosity: sequencing the amplified genome of a single haploid Drosophila melanogaster embryo. Genet, 188: 239-246.
Lee, V.D. & Huang, B. (1990). Missense mutations at lysine-350 in beta-2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. Plant Cell, 2: 1051-1057.
Lenski, R.E., Rose, M.R., Simpson, S.C. & Tadler, S.C. (1991). Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Am Nat, 138: 1315-1341.
Lewis, T.E., Nichols, P.D. & Mcmeekin, T.A. (1999). The biotechnological potential of thraustochytrids. Mar Biol, 1: 580-587.
Lorenz, R.T. & Cysewski, G.R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol, 18: 160-167.
Ma, Y., Islamfaridi, M.N., Crane, C.F., Stelly, D.M., Price, H.J. & Byrne, D.H. (1996). A new procedure to prepare slides of metaphase chromosomes of roses. Hort Sci, 31: 855-857.
Mello, C.C., Draper, B.W. & Prless, J.R. (1994). The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell, 77: 95-106.
Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., Terry, A., Salamov, A., Fritz-Laylin, L.K., Marechal-Drouard, L., Marshall, W.F., Qu, L.H., Nelson, D.R., Sanderfoot, A.A., Spalding, M.H., Kapitonov, V.V., Ren, Q.H., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S.M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C.L., Cognat, V., Croft, M.T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P.A., Lemaire, S.D., Lobanov, A.V., Lohr, M., Manuell, A., Meir, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J.V., Moseley, J., Napoli, C., Nedelcu, A.M., Niyogi, K., Novoselov, S.V., Paulsen, I.T., Pazour, G., Purton, S., Ral, J.P., Riano-Pachon, D.M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S.L., Allmer, J., Balk, J., Bisova, K., Chen, C.J., Elias, M., Gendler, K., Hauser, C., Lamb, M.R., Ledford, H., Long, J.C., Minagawa, J., Page, M.D., Pan, J.M., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A.M., Yang, P.F., Ball, S., Bowler, C., Dieckmann, C.L., Gladyshev, V.N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R.T., Brokstein, P., et al. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318: 245-251.
Metz, J.G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V. & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293: 290-293.
Metzker, M.L. (2010). Sequencing technologies - the next generation. Nat Rev Genet, 11: 31-46.
Nagarajan, N., Read, T.D. & Pop, M. (2008). Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics, 24: 1229-1235.
Perkins, F.O. (1972). The ultrastructure of holdfasts, “rhizoids”, and “slime tracks” in thraustochytriaceous fungi and Labyrinthula spp. Arch Microbiol, 84: 95-118.
Perkins, F.O. (1973). Observations of thraustochytriaceous (Phycomycetes) and labyrinthulid (Rhizopodea) ectoplasmic nets on natural and artificial substrates - an electron microscope study. Can J Bot, 51: 485-491.
Raghu-Kumar, S. (1982). Fine structure of the thraustochytrid Ulkenia amoeboidea. II. The amoeboid stage and formation of zoospores. Can J Bot, 60: 1103-1114.
Raghu-Kumar, S. (1988). Schizochytrium mangrovei sp. nov., a thraustochytrid from mangroves in India. Trans Br Mycol Soc, 90: 627-631.
Raghu-Kumar, S. (1992). Bacterivory: a novel dual role for thraustochytrids in the sea. Mar Biol, 113: 165-169.
Raghu-Kumar, S. (2002). Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol, 38: 127-145.
Raghu-Kumar, S., Sharma, S., Raghu-Kumar, C., Sathepathak, V. & Chandramohan, D. (1994). Thraustochytrid and fungal component of marine detritus .IV. Laboratory studies on decomposition of leaves of the mangrove rhizophora-apiculata blume. J Exp Mar Biol Ecol, 183: 113-131.
Richards, E.J. & Ausubel, F.M. (1988). Isolation of a higher eukaryotic telomere from Arabidopsis Thaliana. Cell, 53: 127-136.
Sakaguchi, K., Matsuda, T., Kobayashi, T., Ohara, J., Hamaguchi, R., Abe, E., Nagano, N., Hayashi, M., Ueda, M., Honda, D., Okita, Y., Taoka, Y., Sugimoto, S., Okino, N. & Ito, M. (2012). Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Appl Environ Microbiol, 78: 3193-3202.
Schibler, M.J. & Huang, B. (1991). The colr4 and colr15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol, 113: 605-614.
Schiedt, K. (1998). Absorption and metabolism of carotenoids in birds, fish, and crustaceans. IN Britton, G., Liaaen-Jensen, S. & Pfander, H. (Eds.) Carotenoids : Biosynthesis and Metabolism. Basel: Birkhauser Verlag.
Schwartz, D.C., Li, X.J., Hernandez, L.I., Ramnarain, S.P., Huff, E.J. & Wang, Y.K. (1993). Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science, 262: 110-114.
Siegenthaler, P.A., Belsky, M.M. & Goldstein, S. (1967). Phosphate uptake in an obligately marine fungus: a specific requirement for sodium. Science, 155: 93-94.
Sparrow, F.K. (1936). Biological observations on the marine fungi of woods hole waters. Biol Bull, 70: 236-263.
Sparrow, F.K. (1943). Aquatic Phycomycetes exclusive of the Saprolegniaceae and Pythium, Ann Arbor: University of Michigan Press.
Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. J Biosci Bioeng, 101: 87-96.
Stack, S.M., Royer, S.M., Shearer, L.A., Chang, S.B., Giovannoni, J.J., Westfall, D.H., White, R.A. & Anderson, L.K. (2009). Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res, 124: 339-350.
Szinay, D., Chang, S.B., Khrustaleva, L., Peters, S., Schijlen, E., Bai, Y.L., Stiekema, W.J., Ham, R.C.H.J.V., Jong, H.D. & Lankhorst, R.M.K. (2008). High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J, 56: 627-637.
Takao, Y., Nagasaki, K., Mise, K., Okuno, T. & Honda, D. (2005). Isolation and characterization of a novel single-stranded RNA virus infectious to a marine fungoid protist, Schizochytrium sp. (Thraustochytriaceae, Labyrinthulea). Appl Environ Microbiol, 71: 4516-4522.
Vinson, J.P., Jaffe, D.B., Oneill, K., Karlsson, E.K., Stange-Thomann, N., Anderson, S., Mesirov, J.P., Satoh, N., Satou, Y., Nusbaum, C., Birren, B., Galagan, J.E. & Lander, E.S. (2005). Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Gen Res, 15: 1127-1135.
Volz, P.A., Hsu, Y.C. & Liu, C.H. (1976). The Thraustochytriaceae and other intertidal fungi of Taiwan. Taiwania, 21: 1-5.
Wong, M.K.M., Tsui, C.K.M., Au, D.W.T. & Vrijmoed, L.L.P. (2008). Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience, 49: 266-270.
Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T. & Higashihara, T. (1997). Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc, 74: 1431-1434.
Yang, H.L., Lu, C.K., Chen, S.F., Chen, Y.M. & Chen, Y.M. (2010). Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Bioltechnol, 12: 173-185.
Yokoyama, R. & Honda, D. (2007). Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience, 48: 199-211.
Yokoyama, R., Salleh, B. & Honda, D. (2007). Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium , Parietichytrium , and Sicyoidochytrium gen. nov. Mycoscience, 48: 329-341.
吳淑姿 (2002),海洋單細胞真菌 - Schizochytrium sp. S31生產多元不飽和脂肪酸 - DHA,博士論文,臺灣大學。
張榮權 (2008),以Thraustochytrium sp.發酵生產二十二碳六烯酸,碩士論文,大葉大學。
莊凱筌 (2011),培養條件對Aurantiochytrium sp. BL10之DHA產量及脂肪酸組成的影響,碩士論文,成功大學。
陳淑芬 (2005),台南沿海地區海生鞭毛真菌多樣性,嘉南學報,31,80-87。
蔡喬筑 (2000),台灣北部沿海地區破囊壺菌科形態、分類學之研究,碩士論文,臺灣師範大學。
盧怡萍 (2004),臺灣淡水紅樹林地區破囊壺菌科形態及分類學之研究,碩士論文,臺灣師範大學。
羅婉 (1991),臺灣產數種破囊壺菌形態、分類學上之研究,碩士論文,臺灣師範大學。
校內:2017-08-23公開