| 研究生: |
吳品儀 Wu, Pin-Yi |
|---|---|
| 論文名稱: |
陽離子效應對魚膠原蛋白在二維材料上自組裝為層級式結構的影響 Influence of Cationic Effect on the Self-Assembly of Fish Collagen into Hierarchical Structures on Two-Dimensional Materials |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 第一型膠原蛋白 、生物界面 、層級式結構 |
| 外文關鍵詞: | Type I collagen, Biointerfaces, Hierarchical Structures |
| 相關次數: | 點閱:126 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞外間質(ECM)是人體組織中非常重要的成分,除了可以維持細胞結構,也有調節細胞行為的作用,包含細胞排列、黏附、遷移和分化。細胞外間質由許多不同類型的蛋白質組成,其中第一型膠原蛋白是ECM中最豐富的成分,在體內會形成複雜且緻密的多層結構。為了構建用於細胞培養和生物醫學應用(例如組織再生和傷口修復)的生物界面,在研究中我們探索了第一型膠原蛋白在生物相容性二維材料(雲母)上的自組裝現象,更進一步利用空間侷限的方法創建了基於膠原蛋白的生物界面,以模擬細胞生長的生存環境。
雲母是由鈉、鉀、鎂和其他金屬鋁矽酸鹽組成的原子級平面層狀基材,當溶液與雲母片接觸時,這些離子會從表面離解。已有多篇文獻討論了各種陰離子對雲母上第一型膠原蛋白自組裝的影響,因此本研究將著重探討陽離子效應,以及陽離子濃度、離子半徑、離子電荷對第一型膠原蛋白自組裝成層級式微奈米結構的影響。另外,也會討論影響第一型膠原蛋白自組裝成奈米纖維的雲母晶格引導,以及緩衝溶液的pH值和電解質的效應。
The extracellular matrix (ECM) is the most important component in the tissue, which can not only maintain cell structures, but also regulate cell behaviors, including cell alignment, adhesion, migration and differentiation. The ECM is composed of different types of proteins among which type I collagen is the most abundant component, forming complex and dense multilayered structures as biointerfaces in tissues. In order to construct biointerfaces for cell culture and biomedical applications, such as tissue regeneration and wound repair, we explored the self-assembly of type I collagen on a biocompatible two-dimensional material (mica), and further created a collagen-based biointerface that can simulate the living environment for cell growth in this research. Mica is an atomically flat and layered substrate composed of sodium, potassium, magnesium and other metal aluminosilicates, which ions dissociate from the surface when it comes in contact with solution. Several literatures have discussed the effects of various anions on collagen self-assembled on mica, so this research will focus on exploring the cation effect as well as the influence of cation concentration, ionic radius, and ionic charge on the self-assembly of type I collagen into a hierarchical micro-nanostructure. Lattice guidance of mica for self-assembly of collagen into nanofibers, the pH value of the buffer solution and the electrolyte effects on arrangement of type I collagen nanofibers will be discussed as well.
1. Rosso, F.; Giordano, A.; Barbarisi, M.; Barbarisi, A. From Cell–ECM interactions to tissue engineering. Journal of Cellular Physiology 2004, 199 (2), 174-180.
2. Ikada, Y. Challenges in tissue engineering. Journal of The Royal Society Interface 2006, 3 (10), 589-601.
3. Kular, J. K.; Basu, S.; Sharma, R. I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering 2014, 5, 2041731414557112.
4. Sun, B. The mechanics of fibrillar collagen extracellular matrix. Cell Reports Physical Science 2021, 2 (8), 100515.
5. Mouw, J. K.; Ou, G.; Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology 2014, 15 (12), 771-85.
6. Cui, H.; Freeman, C.; Jacobson, G. A.; Small, D. H. Proteoglycans in the central nervous system: Role in development, neural repair, and Alzheimer's disease. International Union of Biochemistry and Molecular Biology(IUBMB) Life 2013, 65 (2), 108-120.
7. Gandhi, N. S.; Mancera, R. L. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chemical Biology & Drug Design 2008, 72 (6), 455-482.
8. Frantz, C.; Stewart, K. M.; Weaver, V. M. The extracellular matrix at a glance. Journal of Cell Science 2010, 123 (Pt 24), 4195-200.
9. Pompili, S.; Latella, G.; Gaudio, E.; Sferra, R.; Vetuschi, A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Frontiers in Medicine 2021, 8.
10. Exposito, J. Y.; Valcourt, U.; Cluzel, C.; Lethias, C. The Fibrillar Collagen Family. International Journal of Molecular Sciences [Online], 2010, p. 407-426.
11. Onursal, C.; Dick, E.; Angelidis, I.; Schiller, H. B.; Staab-Weijnitz, C. A. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Frontiers in Medicine 2021, 8.
12. Amirrah, I. N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M. F. M. R.; Motta, A.; Fauzi, M. B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold Biomedicines [Online], 2022.
13. Ricard-Blum, S. The collagen family. Cold Spring Harbor Perspectives in Biology 2011, 3 (1), a004978.
14. Ricard-Blum, S.; Ruggiero, F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathologie Biologie 2005, 53 (7), 430-442.
15. Gordon, M. K.; Hahn, R. A. Collagens. Cell and Tissue Research 2010, 339 (1), 247-57.
16. Revell, C. K.; Jensen, O. E.; Shearer, T.; Lu, Y.; Holmes, D. F.; Kadler, K. E. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biology Plus 2021, 12, 100079.
17. Starborg, T.; Lu, Y.; Huffman, A.; Holmes, D. F.; Kadler, K. E. Electron microscope 3D reconstruction of branched collagen fibrils in vivo. Scandinavian Journal of Medicine & Science in Sports 2009, 19 (4), 547-552.
18. Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annual Review of Biochemistry 2009, 78, 929-58.
19. Karamanos, N. K.; Theocharis, A. D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S. S.; Vynios, D. H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C. E. H.; Duca, L.; Durbeej, M.; Afratis, N. A.; Troeberg, L.; Franchi, M.; Masola, V.; Onisto, M. A guide to the composition and functions of the extracellular matrix. The FEBS Journal 2021, 288 (24), 6850-6912.
20. Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatric Research 2008, 63 (5), 492-496.
21. Song, Y.; Overmass, M.; Fan, J.; Hodge, C.; Sutton, G.; Lovicu, F. J.; You, J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Frontiers in Surgery 2021, 8, 639500.
22. Brodsky, B.; Thiagarajan, G.; Madhan, B.; Kar, K. Triple-helical peptides: an approach to collagen conformation, stability, and self-association. Biopolymers 2008, 89 (5), 345-53.
23. Dong, C.; Lv, Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers (Basel) 2016, 8 (2).
24. Yamada, S.; Yamamoto, K.; Ikeda, T.; Yanagiguchi, K.; Hayashi, Y. Potency of Fish Collagen as a Scaffold for Regenerative Medicine. BioMed Research International 2014, 2014, 302932.
25. Kim, D. H.; Provenzano, P. P.; Smith, C. L.; Levchenko, A. Matrix nanotopography as a regulator of cell function. Journal of Cell Biology 2012, 197 (3), 351-360.
26. Denis, F. A.; Pallandre, A.; Nysten, B.; Jonas, A. M.; Dupont-Gillain, C. C. Alignment and Assembly of Adsorbed Collagen Molecules Induced by Anisotropic Chemical Nanopatterns. Small 2005, 1 (10), 984-991.
27. Li, J. R.; Yin, N. N.; Liu, G. y. Hierarchical Micro- and Nanoscale Structures on Surfaces Produced Using a One-Step Pattern Transfer Process. The Journal of Physical Chemistry Letters 2011, 2 (4), 289-294.
28. Grove, T. Z.; Cortajarena, A. L. Protein Design for Nanostructural Engineering: Concluding Remarks and Future Directions. In Protein-based Engineered Nanostructures.; Cortajarena, A. L., Grove, T. Z., Eds.; Springer, 2016; pp 281-284.
29. Fruncillo, S.; Su, X.; Liu, H.; Wong, L. S. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sensors 2021, 6 (6), 2002-2024.
30. Qian, T.; Wang, Y. Micro/nano-fabrication technologies for cell biology. Medical & Biological Engineering & Computing 2010, 48 (10), 1023-32.
31. Traub, M. C.; Longsine, W.; Truskett, V. N. Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering 2016, 7 (1), 583-604.
32. Zhou, W.; Min, G.; Zhang, J.; Liu, Y.; Wang, J.; Zhang, Y.; Sun, F. Nanoimprint Lithography: A Processing Technique for Nanofabrication Advancement. Nano-Micro Letters 2011, 3 (2), 135-140.
33. Hoff, J. D.; Cheng, L.-J.; Meyhöfer, E.; Guo, L. J.; Hunt, A. J. Nanoscale Protein Patterning by Imprint Lithography. Nano Letters 2004, 4 (5), 853-857.
34. Vigneswaran, N.; Samsuri, F.; Ranganathan, B.; Padmapriya. Recent Advances in Nano Patterning and Nano Imprint Lithography for Biological Applications. Procedia Engineering 2014, 97, 1387-1398.
35. Luo, Q.; Hou, C.; Bai, Y.; Wang, R.; Liu, J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chemical Reviews 2016, 116 (22), 13571-13632.
36. Ben-Sasson, A. J.; Watson, J. L.; Sheffler, W.; Johnson, M. C.; Bittleston, A.; Somasundaram, L.; Decarreau, J.; Jiao, F.; Chen, J.; Mela, I.; Drabek, A. A.; Jarrett, S. M.; Blacklow, S. C.; Kaminski, C. F.; Hura, G. L.; De Yoreo, J. J.; Kollman, J. M.; Ruohola-Baker, H.; Derivery, E.; Baker, D. Design of biologically active binary protein 2D materials. Nature 2021, 589 (7842), 468-473.
37. Suzuki, Y.; Cardone, G.; Restrepo, D.; Zavattieri, P. D.; Baker, T. S.; Tezcan, F. A. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 2016, 533 (7603), 369-373.
38. Walters, B. D.; Stegemann, J. P. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomaterialia 2014, 10 (4), 1488-1501.
39. Pyles, H.; Zhang, S.; De Yoreo, J. J.; Baker, D. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 2019, 571 (7764), 251-256.
40. Franceschi, G.; Kocán, P.; Conti, A.; Brandstetter, S.; Balajka, J.; Sokolović, I.; Valtiner, M.; Mittendorfer, F.; Schmid, M.; Setvín, M.; Diebold, U. Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica. Nature Communications 2023, 14 (1), 208.
41. Arai, T.; Sato, K.; Iida, A.; Tomitori, M. Quasi-stabilized hydration layers on muscovite mica under a thin water film grown from humid air. Scientific Reports 2017, 7 (1), 4054.
42. Bampoulis, P.; Sotthewes, K.; Siekman, M. H.; Zandvliet, H. J. W.; Poelsema, B. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica. Scientific Reports 2017, 7 (1), 43451.
43. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 1976, 32 (5), 751-767.
44. Leow, W. W.; Hwang, W. Epitaxially Guided Assembly of Collagen Layers on Mica Surfaces. Langmuir 2011, 27 (17), 10907-10913.
45. Loo, R. W.; Goh, M. C. Potassium Ion Mediated Collagen Microfibril Assembly on Mica. Langmuir 2008, 24 (23), 13276-13278.
46. Jiang, F.; Hörber, H.; Howard, J.; Müller, D. J. Assembly of collagen into microribbons: effects of pH and electrolytes. Journal of Structural Biology 2004, 148 (3), 268-278.
47. Yang, B.; Adams, D. J.; Marlow, M.; Zelzer, M. Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. Langmuir 2018, 34 (50), 15109-15125.
48. Fang, M.; Goldstein, E. L.; Matich, E. K.; Orr, B. G.; Banaszak Holl, M. M., Type I Collagen Self-Assembly: The Roles of Substrate and Concentration. Langmuir 2013, 29 (7), 2330-2338.
49. Sabatani, E.; Rubinstein, I.; Maoz, R.; Sagiv, J. Organized self-assembling monolayers on electrodes: Part I. Octadecyl derivatives on gold. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1987, 219 (1), 365-371.
50. Li, J.-R.; Garno, J. C. Nanostructures of Octadecyltrisiloxane Self-Assembled Monolayers Produced on Au(111) Using Particle Lithography. ACS Applied Materials & Interfaces 2009, 1 (4), 969-976.
51. Li, P.; Kim, S.; Tian, B. Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS Nano 2022, 16 (12), 19651-19664.
52. Rodriguez-Pascual, F.; Rosell-Garcia, T. Lysyl Oxidases: Functions and Disorders. Journal of Glaucoma 2018, 27.
53. White, M. J.; Kohno, I.; Rubin, A. L.; Stenzel, K. H.; Miyata, T. Collagen Films: Effect of Cross-Linking on Physical and Biological Properties. Biomaterials, Medical Devices, and Artificial Organs 1973, 1 (4), 703-715.
54. Olde Damink, L. H. H.; Dijkstra, P. J.; Van Luyn, M. J. A.; Van Wachem, P. B.; Nieuwenhuis, P.; Feijen, J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science: Materials in Medicine 1995, 6 (8), 460-472.
55. So, C. R.; Hayamizu, Y.; Yazici, H.; Gresswell, C.; Khatayevich, D.; Tamerler, C.; Sarikaya, M. Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation. ACS Nano 2012, 6 (2), 1648-1656.
56. De Leo, F.; Magistrato, A.; Bonifazi, D. Interfacing proteins with graphitic nanomaterials: from spontaneous attraction to tailored assemblies. Chemical Society Reviews 2015, 44 (19), 6916-6953.