簡易檢索 / 詳目顯示

研究生: 林哲瑩
Lin, Che-Ying
論文名稱: 高敏度表面與高解析技術診斷具疾病表現之單一核苷酸多型性:運用SAMs技術固定寡核苷酸
High-sensetive Surfaces and High-resolution Techniques to Diagnose the Single Nucleotide Polymorphism: Use SAMs technique to immobilize oligonucleotides.
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 自我組裝單分子層高解析式X光光電子能譜儀單一核苷酸多形性核酸雜合反應75°低掠角反射傅立葉轉換式紅外線光譜儀
外文關鍵詞: 75 degrees grazing angle FTIR, HRXPS, Self-assembled monolayers, Single nucleotide polymorphism, DNA hybridization
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   組裝單分子層(Self-Assembled Monolayers,SAMs)具有穩定性高、製程簡單、以及末端官能基的可變異性,目前廣被運用在基礎科學研究所需的理想的表面、具功能性的生物感測表面等。SAMs可以化學鍵結方式固定生物單體物種,以用來進行生物分子辨識的應用,如:單一核苷酸多型性(Single Nucleotide Polymorphism,SNP)。本研究中,運用SAMs技術在Au(111)面上化學吸附硫端,並外露末端官能基O=C-OH,緊接著以EDC、NHS作為表面活化劑與媒合劑,結合在寡核苷酸分子5’端修飾的胺基(-NH2),利用O=C-OH與-NH2在SAMs表面形成醯胺鍵,達到DNA序列片段固定在Au表面的目的。
      
      實驗中針對不同溫度、pH值以及媒合劑濃度的變化,建立固定寡核苷酸引子的成效較佳化條件。分析方面則採用同步輻射中心之高解析式X光光電子能譜儀以及75°低掠角反射傅立葉轉換式紅外線光譜儀,針對不同過程的表面做原子鍵結及元素分佈的分析,並由螢光顯微鏡的觀察,建立在Au面上進行核酸雜合反應的效能評估。在表面型態分析部分則以原子力顯微鏡針對表面掃描分析,觀察試片表面經過固定寡核苷酸分子與核酸雜合反應後的表面型態變化。
      
      研究結果顯示,在本研究所採用的不同條件(溫度、pH值)中,以37℃且在酸鹼度為pH值4.5的緩衝溶液的條件下進行寡核苷酸引子固定在晶片上,其固定結果較好;在進行核酸雜合反應時,效能也較佳。當媒合劑濃度為100 mM條件下,固定寡核苷酸引子比媒合劑濃度為1 mM或10 mM的效果要好。對於寡核苷酸引子固定在SAMs上,各階段新的化學結構變化也給予驗證。

     Self-Assembled Monolayers (SAMs) provide a highly stable structure, easily prepared process and flexible functional group. Nowadays SAMs is widely used as an ideal surface on basic science research and for functional surface of Biosensors. Bio-monomer can be immobilized onto SAMs by chemical bonding and applied for molecular recognition, e.g. Single Nucleotide Polymorphism, SNP. The objective of this study is to immobilize DNA primers onto gold surface by introducting SAMs. In the experiment, SAMs was chemically adsorbed on Au(111) and created a tailor functional group of O-C=OH, which was then activated by coupling EDC and NHS, and subsequent to link with 5’ modified Amino group Oligonucleotides by amide bond forming with O-C=OH functional group of SAMs. The factors of different temperatures, pH values, and the concentration of coupling reagents for oligonucleotides immobilization were investigated. The optimized recombination was build using HRXPS (High Resolution X-ray Photoelectron Spectroscopy) of NSRRC (National Synchortron Radiation Research Center) and 75 degrees grazing angle FTIR (Fourier Transform Infrared Spectrometer). The instruments were used to analyze atomic binding energies, elements distribution, and absorbance of functional groups. DNA hybridization was observed using Fluorescence Microscope, and their surface morphologies were mapped by AFM (Atomic Force Microscope). Experimental results demonstrated that the optimized condition for DNA hybridization was determined at 37℃, pH value of 4.5 and the concentration of coupling agent around 100 mM. In accordance with oligonucleotides immobilization, the presences of new chemical structures at different stages were also identified in this study.

    目錄 第一章 序論 1-1前言.................................................................1 1-2研究動機與目的.............................................2 1-3文獻回顧.........................................................3 1-3.1自我組裝單分子層......................................3 1-3.2 SAMs固定生醫單體....................................4 1-3.3固定寡核苷酸之表面分析..........................6 1-3.4 DNA雜合反應檢測.....................................7 1-4 研究架構........................................................9 第二章 理論基礎 2-1自我組裝單分子層(SAMs)原理....................10 2-2生物分子固定理論........................................14 2-2-1 固定理論....................................................14 2-2-2 物理吸附法................................................14 2-2-3 膠體包埋法................................................14 2-2-4 共價鍵結法................................................15 2-2-5 架橋連結法................................................15 2-2-6 共價鍵接合機制........................................16 2-3 接觸角原理...................................................21 2-4 同步輻射光源...............................................23 2-5 XPS................................................................24 2-6 原子力顯微鏡原理與應用...........................25 第三章 材料與方法 3-1 Dot Hybridization 雜合反應實驗..................28 3-2 寡核苷酸固定與雜合反應實驗材料...........30 3-3自我組裝單分子層製備................................30 3-3-1玻璃器皿清洗.............................................30 3-3-2 基材製備....................................................30 3-4 寡核苷酸固定在SAMs基材與雜合反應......31 3-4-1 固定Sense primer1在SAMs基材上.............31 3-4-2 固定Sense primer2在SAMs基材上,及試片上之雜合反應........................31 3-5 接觸角量測....................................................32 3-6 XPS分析.........................................................33 3-7 FTIR分析........................................................34 3-8 掃描式探針顯微鏡-AFM mold(Scanning Probe Mic)roscope, SPM)................35 3-9 螢光顯微鏡觀察...............................................................................................35 第四章 結果與討論 4-1 冷光實驗評估pH值對寡核苷酸之固定與雜合成效之影響..........................37 4-2 接觸角量測與表面親疏水性之分析...............................................................39 4-3 紅外線吸收光譜與表面官能基之分析評估寡核苷酸固定成效...................43 4-4 光電子能譜儀分析寡核苷酸固定與雜合成效及表面之元素分布...............49 4-5螢光顯微鏡觀察核酸雜合反應成效................................................................55 4-6 原子力顯微鏡觀察寡核苷酸固定與核酸雜合反應後之表面型態變化.......58 結論.........................................................................................................................62 附錄 參考文獻

    參考文獻

    1. B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, Biomaterials Science: An introduction to Materials in Medicaine, Chap.2, Academic press, 1996.
    2. A. Ulman, Thin films: self-assembled monolayers of thiols, Academic Press: San Diego, CA, 1998.
    3. R. G. Nuzzo, B.R. Zegarski. and L. H. Dubois, ”fundamental studies of chemisorption of organosulfur compounds on Au (111). Implications for molecular self-assembly on gold surface”, Journal of the American Chemical Society, Vol. 109, pp. 92-98, 1987.
    4. C. D. Bain and G. M. Whiteside, ”Formation of monolayers by the coadsorption of thiols on gold:variation in the length of the alkyl chain”, Journal of the American Chemical Society, Vol. 111, pp. 7164-7175, 1989.
    5. J. P. Flokers, P. E. Laibinis and G. M.Whiteside, “Self-assembled monolayers of alkanethiols on gold: comparisons of monolayers containing mixtures of short- and long-chain constituents with CH3 and CH2OH terminal group”, Langmuir, Vol. 8, pp. 1330-1341, 1992.
    6. P. E. Laibinis, G. M. Whiteside, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, “Comparison of the structures an wetting properties of self assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au”, Journal of the American Chemical Society, Vol. 113, pp. 7152-7167, 1991.
    7. A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, Part 3, Rochester, 1991.
    8. L. H. Dubois and R. G. Nuzzo, “Synthesis, Structure, and Properties of Model Organic Surfaces”, Annual review of physical chemistry, Vol. 43, pp. 437-463, 1992.
    9. W. Mar, J. Hautman and M. L. Klein, “Molecular Dynamics Studies of Microscopic Wetting Phenomena on Self-Assembled Monolayers”, Computational Materials Science, Vol. 3, pp. 481-497, 1995.
    10. T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe, and W. Knoll, “High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111)”, Langmuir, Vol. 14, No. 8, pp. 2092, 1998.
    11. T. Ishida and N. Choi, “High resolution X-ray photoelectron spectra of
    organosulfur monolayers on Au(111): S(2p) spectral dependence on molecular species”, Langmuir, Vol. 15, No. 20, pp. 6799, 1999.
    12. M. Yang, Y. C. Kong, N. Kazmi, and K.C. Leung, “Covalent immobilization of oligonucleotides on modified Glass/Silicon surfaces for solid-phase DNA hybridization and amplification”, Chemistry Letter, pp. 257-258, 1998.
    13. N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, and J. Remacle, “Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays”, Analytical Biochemistry, Vol. 280, pp. 143-150, 2000.
    14. J. J. Gooding, L. Pugliano, D. B. Hibbert, P. Erokhin, “Amperometric biosensor with enzyme amplification fabricated using self-assembled monolayers of alkanethiols: the influence of the spatial distribution of the enzymes”, Electrochemistry Communications, Vol. 2, pp. 217-221, 2000.
    15. M. Satjapipat, R. Sanedrin, and F. Zhou, “Selective desorption of alkanethiols in mixed self-assembled monolayers for subsequent oligonucleotide attachment and DNA hybridization”, Langmuir, Vol. 17, pp.7637-7644, 2001.
    16. M. Riepl, K. Enander, and B. Liedberg, “Functionalized surfaces of mixed alkanethiols on gold as a plateform for oligonucleotide microarrays”, Langmuir, Vol. 18, pp. 7016-7023, 2002.
    17. C. W. Ge, J. H. Liao, W. Yu, N. Gu, “Electric potential control of DNA immobilization on gold electrode”, Biosensors and Bioelectronic, Vol. 18, pp. 53-58, 2003.
    18. W. Miao and A. J. Bard, “Electrogenerated chemiluminescence. 72. determination of immobilized DNA and C-Reactive protein on Au(111) electrodes using Tris(2,2’-bipyridyl)ruthenium(II) labels”, Analytical Chemistry. Vol.75, pp. 5825-5834, 2003.
    19. G. I. Dovbeshko, N. Y. Gridina, E. B. Kruglova, O. P. Pashchuk, “FTIR spectroscopy studies of nucleic acid damage”, Talanta, Vol. 53, pp. 233-246, 2000
    20. R. Voicu, R. Boukherroub, V. Bartzoka, T. Ward, T. C. Wojtyk, and D. M. Wayner, “Formation, characterization, and chemistry of undecanoic acid-terminated silicon surfaces: Patterning and immobilization of DNA”, Langmuir, Vol. 20, pp. 11713-11720, 2004.
    21. A. V. Saprigin, C. W. Thomas, C. S. Dulcey, C. H. Patteson Jr and M. S. Spector, “Spetroscopic quantification of covalently immobilized oligonucleotides”, Surface and Interface Analysis, Vol. 36, pp. 24-32, 2004.
    22. Y. Chen, Y. Chen, H. Lii, and Z. Lu, “Chemiluminescence detection of Epstein-Barr virus DNA with an oligonucleotide probe”, Clinica Chimica Acta, Vol. 298, pp. 45-53, 2000.
    23. M. Veiseh, M. H. Zareie, and M. Zhang, “High selective protein patterning on Gold-Silicon substrates for biosensor application”, Langmuir, Vol. 18, pp. 6671-6678, 2002.
    24. G. J. Zhang, T. Tanii, T. Zako, T. Funatsu, I. Ohdomari, “The immobilization of DNA on microstructured patterns fabricated by markless lithography”, Sensors and Actuators B, Vol. 97, pp. 243-248, 2004.
    25. H. Cai, C. Xu, P. He, Y. Fang, “Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA”,Journal of Electroanalytical Chemistry, Vol. 510, pp. 78-85, 2001.
    26. H. Cai, Y. Wang, P. He, Y. Fang, “Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label”, Analytica Chimica Acta, Vol. 469, pp. 165-172, 2002.
    27. H. Cai, N. Zhu, Y. Jiang, P. He, Y. Fang, “Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization”, Biosensors and Bioelectronics, Vol. 18, pp. 1311-1319, 2003.
    28. A. Ulman, “Formation and structure of self-assembled monolayers”, Chemistry Review, Vol. 96, pp. 1533-1554, 1996.
    29. H. O. Finklea, B. Robinsin, L.R. Richter, A. B. Allara and D. T. Bright, Langmuir, Vol. 2, pp. 239, 1986.
    30. M. D. Porter, T. B. Bright, A. B. Allara and C. E. D. Christopher, “Spontaneiusly organize molecular assemblies. 4. structural characterization of n-alklythiol monolayers on gold by optical ellipsometry, infrared spectroscopy and electrochemistry”, Journal of the American Chemical Society, Vol. 109, pp. 3539-3568, 1987.
    31. J. D. Liao, M. C. Wang, C. C. Weng, R. Kluser, S. Frey, M. Zharnikov and M. Grunz, “Modification of Alkanethiolate Self-Assembled Monolayers by Free Radical-Dominant Plasma”, Journal of Physical Chemistry B, in perss.
    32. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides and P. E. Laibinis , “Molecular Conformation in Oligo(ethylene glycol)-Terminated Self –Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability to Resist Peotein Adsorption”, Journal of Physical Chemistry B, Vol. 102, pp. 426-436, 1998.
    33. B.D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, pp. 124-130, Academic Press, 1996.
    34. 陳治誠, ”生化感測器技術簡介”, 科儀新知, Vol. 15, No. 2, pp. 71-81,1993.
    35. D. R. Lloyd and C. M. Bruns, “Coupling of acrylic polymers and collagen by use of a water-soluble carbodiimide I. Optimization of reaction conditions”, Journal of Polymer Science-Polymer Chemistry Edition, Vol. 17, pp. 3459-3472,1979.
    36. G. F. Bickerstaff, Immobilization of Enzymes and Cells, pp. 1-11,Humana Press Inc., 1996.
    37. 劉英俊, 汪金追, 酵素工程, pp. 199-223, 中央圖書出版社, 1987.
    38. K. L. Carraway and D. E. Koshland, “Carbodiimide modification of proteins”, Method in Enzymol, Vol. 25, pp. 616-623, 1972.
    39. S. Sano, K. Kato, and Y. Ikada., ”Introduction of functional groups onto the surface of polyethylene for protein immobilization.”, Biomaterials, vol.14(11), pp 817-822, 1993.
    40. D. R. Lloyd and C. M. Bruns, “Coupling of acrylic polymers and collagen by use of a water-soluble carbodiimide II: Investigations of the coupling mechanism”, Journal of Polymer Science-Polymer Chemistry Edition, Vol. 17, pp. 3473-3483, 1979.
    41. R. A. Laursen, “The peptides, vol. 4”, Chap.6, Academic press, 1981.
    42. T. F. Richard, Protein immobilization: fundamentals and applications. New York: Marcel Dekker. 1991.
    43. W. Friess, “Review article: collagen-biomaterial for drug delivery”, European Journal of Pharmaceutics and Biopharmaceutics, vol. 45, pp 113-136, 1998.
    44. A. Marmur, “Equilibrium Contact Angles: Theory and Measurement”, Colloids and Surfaces A, Vol. 116, pp. 55-61, 1996.
    45. J. P. Badey, E. Espuche, D. Sage and B. Chabert, “A Comparative Study of the Effects of Ammonia and Hydrogen Plasma Downstream Treatment on the Surface Modification of Polytetrafuoroethylene”, Polymer, Vol. 37, pp. 1377-1386,1996.
    46. C. L. Rong, T. Wakida, “Studies on the Surface Free Energy and Surface Structure of PTFE Film Treated with Low Temperature Plasma”, Surface Structure of PTFE Film, pp. 1733-1739, 1996.
    47. R. L. C. Wang, H. J. Kreuzer, “Molecular Conformation and Solvation of Oligo(ethyleneglycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption”, Journal of Physical Chemistry B., Vol.101, pp. 9767-9773, 1997.
    48. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides, P. E. Laibinis, “Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surface Determins Their Ability to Resist Protein Adsorption”, Journal of Physical Chemistry B, Vol. 102, pp. 426-436, 1998.
    49. E.L. Decker, B. Frank, Y. Suo, S. Garoff, “Physics of Contact Angle Measurement”, Colloids and Surfaces A, Vol. 156, pp. 177-189, 1999.
    50. D. Y. Kwok, A. W. Neumann, “Contact Angle Measurement and Contact Angle Interpretation”, Advance in Colloid and Interface Science, Vol. 81, pp. 167-249, 1999.
    51. J. Bachmann, A. Ellies, K.H. Hartge, “Development and Application of a New Sessile Drop Contact Angle Method to Assess Soil Water Repellency”, Journal go Hydrology, Vol. 231-232, pp. 66-75, 2000.
    52. F. Garbassi, M. Morra, E. Occhiello, “Polymer Surfaces from Physics to Technology, Chap 4 :161-199”, Chichester ; Wiley, 1994.
    53. K. Grundke, T. Bogumil, C. Werner, A. Janke, K. Poschel and H. J. Jacobasch, “Liquid-Fluid Contact Angle Measurement on Hydrophilic Cellulosic materials,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, pp.116, pp. 79-91, 1996.
    54. 郭正次, “激發光光譜分析”, 材料分析, Ch. 10, 中國材料學會.
    55. 潘扶民, “化學分析電子儀分析”, 材料分析, Ch. 13, 中國材料學會.
    56. S. Gasiorowicz, Quantum Physics, Ch. 1, John Wiley and sons, pp. 7, 1974.
    57. D. Bonnell, Scanning Probe Microscopy and Spectroscopy Theory, techniques, and Applications , Wiley, 2001.
    58. S. C. Chung, C. I. Chen , P. C. Tseng, Dann and et. al., Reviewof Scentifici Instruments, Vol. 66, No. 2, pp. 1655, 1995.
    59. 王兆恩, 張正祥, 同步輻射研究中心簡訊, 第37期, 第12頁, 1997.
    60. G. P. Lopez, B. D. Ratner, R. J. Rapoza and T. A. Horbeet, “Plasma Deposition of Ultrathin Films of Poly (2-hydroxyethyl methacrylate): Surface Analysis and Protein Adsorption Measurements”, Macromolecules, Vol. 26, No 13, pp. 3247-3252, 1993.
    61. P. Favia and R. Agostino, “Plasma Treatments and Plasma Deposition of Polymers for Biomedical Applications”, Surface and Coatings Technology, pp. 1102-1106, 1998.
    62. F. Gaillard, I. Linossier, M. Sweeney, J. A. Reffner and Romand, “Grazing-angle micro-FTIR spectroscopy(GAM-FTIR): Applications to adhesion studies”, Surface and Interface Analysis, Vol. 27, pp. 865-870, 1999.
    63. R. W. Paynter, “XPS Studies of the Modification of Polystyrene and Polyethyleneterephalate Surface by Oxygen and Nitrogen Plasmas”, Surface and Interface Analysis, Vol. 26, pp. 674, 1998.
    64. G. T. Hermanson, Bioconjugate technique, Acadmic Press, 1996.
    65. E. Houng, F. Zhou and L. Deng, “Studies of Surface Coverage and Orientation of DNA Molecules Immobilized onto Preformed Alkanethiol Self- Assembled Monolayers”, Langmuir, Vol. 16, pp. 3272-3280, 2000
    66. 同步輻射研究中心簡介
    67. 柯正浩, 同步輻射研究中心簡訊, 第39期, 第6頁, 1998.
    68. 洪一弘, 曾平忠, 曾金榮, 同步輻射研究中心簡訊, 第43期, 第17頁, 1999.

    下載圖示 校內:2006-07-27公開
    校外:2006-07-27公開
    QR CODE