| 研究生: |
廖美儀 Liao, Mei-Yi |
|---|---|
| 論文名稱: |
錳鐵合金氧化物奈米結構在催化、光熱治療與生物影像之應用 Manganese iron oxide nanostructures for catalysis, photothermal therapy and bioimaging applications |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 近紅外光 、光熱治療 、磁共振造影 、氧化鐵 、四氧化三鐵 |
| 外文關鍵詞: | NIR, photothermal, MRI, iron oxide, Fe3O4 |
| 相關次數: | 點閱:127 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分:使用配位子輔助合成具有近紅外特性的氧化鐵可作為 MRI 引導下的光熱殺癌診療試劑
本研究研發出使用carboxylate ligand和MOF-related ligand搭配與亞鐵離子水熱反應後製作出新式具近紅外(NIR)活性的 Fe3O4 奈米結構,產物透過傅立葉紅外光譜和 X 光光電子能譜分析,推測材料表面吸附的羧酸分子會影響氧化鐵的可見光-近紅外光吸收特性,這些光學吸收峰可能是由於鐵的 d-d 電子轉移,激活了氧化鐵在近紅外光的吸收特性。將材料表面修飾上一層中孔二氧化矽,在以酸進行腐蝕反應,觀察到材料是由內而外的掏空,而近 NIR 活性的 Fe3O4 奈米結構的 NIR 吸收峰隨著反應時間逐漸消逝,這說明氧化鐵的近紅外光特性與表面吸附的羧酸分子有關。此外,本研究發展的羧酸分子反應方式還可製作出具有 NIR 吸收特性的 α-Fe2O3 的奈米板。對於 NIR 活性的 Fe3O4 奈米結構的磁性、磁振顯影能力與光熱消融 KB 細胞皆會一同探討,配合熱像儀與磁振影像的觀察,NIR 活性的 Fe3O4 奈米結構可作為局部腫瘤治療的磁振顯影劑,並可使用近紅外光雷射以光熱方式剝除腫瘤。根據細胞與動物實驗,NIR 活性的 Fe3O4 奈米結構並無明顯的生物毒性。
第二部分:經由Kirkendall效應合成磁性中空奈米管應用於磁振造影劑與雙氧水感測
本研究發展了能簡單製作磁性奈米中空材料的合成方式,方法是將硬酯酸鐵與硬酯酸錳以特定比例混合 (Mn:Fe = 1:1 或是 Mn:Fe = 2:1),以 Mn:Fe = 1:1 的實驗參數為主要研究,經過溶熱 (240 ℃) 反應後,由穿透式電子顯微鏡與 X 光粉末繞射儀進行材料分析,當反應進行一小時,產生了 tetragonal 晶型的奈米棒,當反應進行至 12 小時,產物晶型變成 spinel-type 結構,而外觀則是空心管的形狀,此時的錳/鐵比例接近於 1,透過高解析子顯微鏡的研究,我們看到了實心變為空心的轉換 (經由不同時間觀察),這種空心的反應似乎涉及了 Kirkendall 效應和 tetragonal/spinel-type 有磊晶的關係,有利原子向外擴散。藉由超導量子干涉儀確定器件 (SQUID) 確定 tetragonal 晶型的奈米棒 (順磁) 的飽和磁化率低於 spinel-type 結構的奈米管 (超順磁)。使用 spinel-type 結構的奈米管可讓磁振顯影的效應變大,可能與材料高飽合磁化率有關。Tetragonal 晶型的奈米棒 (順磁) 與 spinel-type 結構的奈米管皆可以用在過氧化氫的分解反應,以異相催化方式降解雙氧水。使用本技術製作空心材料,還可以 Mn3O4 奈米板與硬酯酸鐵 (Fe:Mn = 2:1) 進行溶熱反應至得磁性空心奈米結構。
Part I: Innovative ligand-assisted synthesis of NIR-activated iron oxide as a promising theranostic agent for MRI-guided photothermal therapy
A new near-infrared (NIR)-activated Fe3O4 nanostructure was synthesized using a ligand-assisted hydrothermal process with carboxylate ligand and MOF-related ligand. No additional photoabsorbers (i.e., Au nanoshells, Au nanorods, or organic dyes) were necessary in this one-pot reaction. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that the carboxylate molecules on the surface of the Fe3O4 nanostructure affected the visible–NIR d–d transitions of iron ions and resulted in a dramatic absorbance enhancement in the NIR region. The NIR-activated Fe3O4 nanostructure modified with mesoporous silica (mSiO2) showed the gradual depletion of the NIR absorption band as a function of HCl etching time as the iron oxide core was removed from the inside out, which suggested that the ligand-capped surface composites contributed to the NIR absorption of the iron oxide materials. Notably, this ligand-assisted hydrothermal reaction was also utilized to synthesize NIR-activated α-Fe2O3 nanoplates. Because of their magnetic properties, NIR-activated Fe3O4 nanostructures were biologically examined in vitro and in vivo as a potential therapeutic agent. The Fe3O4 nanostructures were used for the NIR laser photothermal ablation of KB cells, for the acquisition of local thermal images, and as an MR contrast agent for local tumor treatments. The NIR-activated Fe3O4 nanostructures had no significant toxic effects based on cell and animal experiments.
Part I: Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor
We developed a simple solvothermal approach to synthesize hollow Mn ferrite nanostructures. A mixture of ferric stearate (Fe(SA)3) and manganese stearate (Mn(SA)2) reacted with [Fe3+]/[M2+] ratio = 1: 1 in 1-octanol solvent at 240 oC. No additional capping agent was necessary in this reaction. Transmission electron microscopy (TEM) and X-ray diffractometer (XRD) showed that solid tetragonal-structured hausmannite nanorods were primary formation at ~ 1 h and then followed by a hollowing process to form core-free spinel-type Mn ferrite nanotubes at ~ 12 h. The as-obtained Mn ferrite nanotubes showed a non-stoichiometric composition, which was an average ratio of Fe and Mn elements as ~ 1. High resolution TEM (HRTEM) analysis was carried to understand the hollowing process which suspected a crystallographic relationship of facet orientation and epitaxial growth via a Kirkendall effect pathway. Superconducting quantum interference device (SQUID) measurements determined that the paramagnetic behavior of hausmannite nanorods with low mass magnetization conversed to superparamagnetism of Mn ferrite nanotubes with high mass magnetization. Magnetic resonance imaging (MRI) contrast signal was significantly enhanced by using high magnetic Mn ferrite nanotubes. Both solid hausmannite nanorods and hollow Mn ferrite nanotubes performed the potential application in peroxidase-like catalytic activity. Furthermore, this hollowing strategy using solvothermal method could be easy handy o prepare stoichiometric composition of hollow Mn ferrite nanospheres by adjusting the [Fe3+]/[M2+] ratio (2: 1) of metal precursors through either a one-step or step-by-step syntheses.
[1].
http://www.esf.org/publication/214/Nanomedicine.pdf.
[2]. P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293.
[3]. A. Louie, Chem. Rev. 2010, 110, 3146.
[4]. Y. W. Jun, J. H. Lee, J. Cheon, . Angew. Chem. Int. Ed. 2008, 47, 5122.
[5]. E. E. Kim, R. L. Corgan, S. Casper, F. J. Primus, E. Spremulli, N. Estes, D. M. Goldenber, J. Nucl. Med. 1979, 20, 1243.
[6]. http://www.cardiff.ac.uk/biosi/researchsites/emric/basics.html.
[7]. P. C. Lauterbur, M. H. Dias, A. M. Rudin, P. L. Dutton, J. S. Leigh, A. Scarpa (Eds.), Frontiers of Biological Energetics, Academic, New York, NY 1978, pp. 752.
[8]. M. H. Mendonca-Dias, E. Gaggelli, P. C. Lauterbur, Sem. Nucl. Med. 1983, 13, 364.
[9]. M. F. Wendland, NMR Biomed. 2004, 17, 581.
[10]. R. B. Lauffer, Chem. Rev. 1987, 87, 901.
[11]. G. Elizondo, C. J. Fretz, D. D. Stark, S. M. Rocklage, S. C. Quay, D. Worah, Y. M. Tsang, M. C. Chen, J. T. Ferrucci, Radiology 1991, 178, 73.
[12]. H. Maedaa, J. Wua, T. Sawaa, Y. Matsumurab, K. Horic, Journal of Controlled Release 2000, 65, 271.
[13]. C. C. Huang, N. H. Khu, C. S. Yeh, Biomaterials 2010, 31, 4073.
[14]. H. B. Na, J. H. Lee, K. An, Y. I. Park, M. Park, I. S. Lee, D. H. Nam, S. T. Kim, S. H. Kim, S. W. Kim, K. H. Lim, K. S. Kim, S. O. Kim, T. Hyeon, Angew. Chem. Int. Ed. 2007, 46, 5397.
[15]. M. J. Baek, J. Y. Park, W. Xu, K. Kattel, H. G. Kim, E. J. Lee, A. K. Patel, J. J. Lee, Y. Chang, T. J. Kim, J. E. Bae, K. S. Chae, G. H. Lee, ACS Appl. Mater. Interfaces 2010, 2, 2949.
[16]. J. Shin, R. M. Anisur, M. K. Ko, G. H. Im, J. H. Lee, I. S. Lee, Angew. Chem. Int. Ed. 2009, 48, 321.
[17]. T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi, J. Kim, M. Park, N. Lee, M.T. McMahon, A. Quinones-Hinojosa, J. W. Bulte, T. Hyeon, A. A. Gilad J. Am. Chem. Soc. 2011, 13, 2955.
[18]. Y. K. Peng, C.W. Lai, C. L. Liu, H. C. Chen, Y. H. Hsiao, W. L. Liu, K. C. Tang, Y. Chi, J. K. Hsiao, K. E. Lim, H. E. Liao, J. J. Shyue, P. T. Chou, ACS Nano 2011, 5, 4177.
[19]. H. Yang, Y. Zhuang, H. Hu, X. Du, C. Zhang, X. Shi, H. Wu, S. Yang, Adv. Funct. Mater. 2010, 20, 1733.
[20]. E. M. Shapiro, A. P. Koretsky, Magn. Reson. Med. 2008, 60, 265.
[21]. T..Kim, E. J. Cho, Y. Chae, M. Kim, A. Oh, J. Jin, E. S. Lee, H. Baik, S. Haam, J. S. Suh, Y. M. Huh, K. Lee, Angew. Chem. Int. Ed. 2011, 50, 10589.
[22]. D. Choi, A. Han, J. P. Park, J. K. Kim, J. H. Lee,T. H. Kim, S.-W. Kim, Small 2009, 5, 571.
[23]. C. C. Huang, C. N. Changab, C. S. Yeh, Nanoscale 2011, 3, 4254.
[24]. B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
[25]. T. Tachikawa, Y. sanoi, K. kawai, S. Tojo, A. Sugimoto, M. Fujitsuka, T. Majima, Chem. Eur. J. 2008, 14, 1492.
[26]. P. J. Endres, T. Paunesku, S. Vogt, J. Meade, G. E. T. Woloschak, J. Am. Chem. Soc. 2007, 129, 15760.
[27]. J. Miyawaki, M. Yudasaka, H. Imai, H. Yorimitsu, H. Isobe, E. Nakamura, S. Iijima, J. Phys. Chem. B 2006, 110, 5179.
[28]. S. Kang, M. Pinault, L. D. P fefferle, M. Elimelech, Langmuir 2007, 23, 8670.
[29]. O. Stephen, L. Brus, C. B. Murray, J .Am. Chem. Soc. 2001, 123, 12085. 2. S. H. Sun, D. B. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J .Am. Chem. Soc. 2004, 126, 673.
[30]. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew Chem. 2005, 117, 2842.
[31]. B. K. Paul, S. P. Moulik, Curr. Sci. 2001, 80, 990.
[32]. D. Ansil, L. Katja, N. Mayumim, W. Sueng, C. S. Chang, V. P. M. Kurikka, U. Shafi, C. Mary, A. G. Ricgard, J .Am. Chem. Soc. 2003, 125, 1648.
[33]. S. H. Huang, M. H. Liao, D. H. Chen, Biotechnol. Prog. 2003, 19, 1095.
[34]. N. Nagatani, M. Shinkai, H. Honda, T. Kobayashi, M. J. Davids, J. I. Taylor, N. Sachsing, I. J. Bruce, Anal. Bioch. 1998, 262, 92.
[35]. J. K. Herr, J. E. Smith, C. D. Medley, D. Medley, D. Shangguan, W. Tan, Anal. Chem. 2006, 78, 2918.
[36]. H. Gu, P. L. Ho, K. T. Tsang, L. Wang, L. Wang, B. Xu, J .Am. Chem. Soc. 2003, 125, 15702.
[37]. M. Gonzales-Weimuller, M. Zeisberger, K. M. Krishnan, Journal of Magnetism and Magnetic Materials 2009, 321, 1947.
[38]. L. Thomas, Dekker, M. Kallumadil, P. Southern, M. Wilson, S. P. Nair, Q. A. Pankhurst, I. P. Parkin, J. Mater. Chem. 2009, 19, 6529.
[39]. H. K. Moon, S. H. Lee, H. C. Choi, ACS Nano 2009, 3, 3707.
[40]. S. Ghosh, S. Dutta, E. Gomes, D. Carroll, R. D’Agostino, J. Olson, M. Guthold, W. H. Gmeiner, ACS Nano 2009, 3, 2667.
[41]. J. W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, V. P. Zharov, Laser in Surgery and Medicine 2007, 39, 622.
[42]. P. K. Jain, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2426.
[43]. S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed, Chemical Physics Letters 1999, 315, 12.
[44]. I. H. El-Sayed, X. Huang, M. A. El-Sayed, Cancer Letters 2006, 239, 129.
[45]. A. D. Bangham, M. M. Standish, G. Weissmann, J. Mol. Biol. 1965, 13, 265.
[46]. X. Huang, S. Neretina, M. A. El-Sayed, Adv. Mater. 2009, 21, 4880.
[47]. S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, Y. Xia, Acc Chem Res. 2008, 41, 1587.
[48]. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zahang, Y. Xia, Nano Lett. 2007, 7, 1318.
[49]. N. W. S. Kam, M. O’Connell, J. A. Wisdom, H. Dai, Proc. Natl. Acad. Sci. 2005, 102, 11600.
[50]. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711.
[51]. A. D. Smigelskas, E. O. Kirkenall, Trans. AIME 1947, 171, 130.
[52]. Y. Chang, M. L. Lye, H. C. Zen, Langmuir 2005, 21, 3746.
[53]. S. Peng, S. Sun, Angew. Chem. Int. Ed. 2007, 46, 4155.
[54]. S. M. Lee, S. N. Cho, J. Cheon, Adv. Mater. 2003, 15, 441.
[55]. H. G. Yang, H. C. Zeng, J. Phys. Chem. B 2004, 108, 3492.
[56]. X.-Y. Wu, H.-J. Liu, J.-Q. Liu, K. N. Haley, J.A. Treadway, J. P. Larson, N.-F. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol. 2003, 21, 41.
[57]. Y. Chang, J. T. Teo, H. C. Zeng, Langmuir 2005, 21, 1074.
[58]. C. J. Jia, L. D. Sun, Z. D. Yan, L. P. You, F. Luo, X. D. Han, Y. C. Pang, P. Z. Zhang, C. H. Yan, Angew. Chem. Int. Ed. 2005, 44, 4328.
[59]. J. Li, H. C. Zeng, J. Am. Chem. Soc. 2007, 129, 15839.
[60]. Y. Sun, Y. Xia, Science 2002, 298, 2176.
[61]. Y. Sun, Y. Xia, Anal. Chem. 2002, 74, 5297.
[62]. Y. Sun, B. T. Mayers, Y. Xia, ano Lett.2002, 2, 481.
[63]. Y. Sun, B. T. Mayers, Y. Xia, Adv. Mater.2003, 15, 641.
[64]. F. Caruso, R. A. Caruso, H. Möhwald, Science 1998, 6, 1111.
[65]. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kin, H. Yan, Adv. Mater. 2003, 15, 353.
[66]. (a) Y. P. He, Y. M. Miao, C. R. Li, S. Q. Wang, L. Cao, S. S. Xie, G. Z. Yang, B. S. Zou, Physical Review B 2005, 71, 125411. (b) R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses 2003, VCH, Weinheim and New York.
[67]. Roger G. Burns, Mineralogical Applications of Crystal Field Theory, 1993, Cambridge University Press; 2 edition.
[68]. (a) M. Yamashita, T. Akai, R. Sawa, J. Abe, M. J. Matsumura, Non-Cry. Solid 2008, 354, 4534. (b) B. Hannoyer, M. Lenglet, J. Dürr, R. Cortes, J. Non-Cry. Solid 1992, 151, 209. (c) R. K. Kulladapu, H. Li, G. L. Smith, J. D. Crum, J.-S. Jeoung, W. H. Poisl, M. C. Weinberg, J. Non-Cry. Solid 2003, 317, 301.
[69]. X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, Y. Li, Adv. Funct. Mater. 2006, 16, 1805.
[70]. (a) C.-C. Huang, C.-Y. Tsai, H.-S. Sheu, K.-Y. Chuang, C.-H. Su, U-S. Jeng, F.-Y. Cheng, C.-H. Su, H.-Y. Lei, C.-S. Yeh, ACS Nano 2011, 5, 3905. (b) C.-C. Huang, W. Huang, C.-S. Yeh, Biomaterials 2011, 32, 556.
[71]. See experiment section in Supporting Information.
[72]. T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441.
[73]. (a) A. G. Roca, J. F. Marco, M. d. P. Morales, C. J. Serna, J. Phys. Chem. C 2007, 111, 18577. (b) L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, B. Dragnea, Chem. Mater. 2007, 19, 3624.
[74]. (a) M. Matzapetakis, C. P. Raptopoulou, A. Tsohos, V. Papaefthymiou, N. Moon, A. Salifoglou, J. Am. Chem. Soc. 1998, 120, 13266. (b) M. Riou-Cavellec, C. Albinet, J.-M. Grenècheb, G. Fèrey, J. Mater. Chem. 2001, 11, 3166.
[75]. (a) M. D. Shultz, J. U. Reveles, S. N. Khanna, E. E. Carpenter, J. Am. Chem. Soc. 2007, 129, 2482. (b) C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, J. Am. Chem. Soc. 2004, 126, 9938. (c) E. Amstad, H. k. Fischer, A. U. Gehring, M. Textor, E. Reimhult, Chem. Eur. J. 2011, 17, 7396.
[76]. Y. W. Jun, J. H. Lee, J. Cheon, Angew. Chem. Int. Ed. 2008, 47, 5122.
[77]. J. Kim, Y. Piao, T. Hyeon, Chem. Soc. Rev. 2009, 38, 372.
[78]. J. T. Jang, H. Nah, J. H. Lee, S. H. Moon, M. G. Kim, J. Cheon, Angew. Chem. Int. Ed. 2009, 48, 1234.
[79]. H. G. Yang, H. C. Zeng, J. Phys. Chem. C 2008, 112, 666.
[80]. X. Lu, L. Au, J. McLellan, Z.-Y. Li, M. Marquez, Y. Xia, Nano Lett. 2007, 7, 1764.
[81]. X. Sun, J. Liu and Y. Li, Chem.–Eur. J. 2006, 12, 2039.
[82]. C.-C. Huang, T.-Y. Liu, C.-H. Su, Y.-W. Lo, J.-H. Chen, C.-S. Yeh, Chem. Mater. 2008, 20, 3840.
[83]. M. Ohnishi, Y. Kozuka, Q.-L. Ye, H. Yoshikawa, K. Awaga, R. Matsuno, M. Kobayashi, A. Takahara, T. Yokoyama, S. Bandow and S. Iijima, J. Mater. Chem. 2006, 16, 3215.
[84]. Y.-Q. Yeh, B. C. Chen, H.-P. Lin, C.-Y. Tang, Langmuir 2006, 22, 6.
[85]. C.-C. Huang, W. Huang, C.-S. Yeh, Biomaterials 2011, 32, 556.
[86]. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. A. Somorjai, P. Alivisatos, Science 2004, 430, 711.
[87]. H. J. Fan, U. Gcsele and M. Zacharias, Small 2007, 3, 1660.
[88]. J.-F. Hong, M. Knez, R. Scholz, E.-P. Nielsch, D. Hesse, M. Zacharias and U. Göosele, Nat. Mater. 2006, 5, 627.
[89]. J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, Nat. Med. 2007, 13, 95.
[90]. K. M. Krishnan, A. B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji and B. Roberts, J. Mater. Sci. 2006, 41, 793.
[91]. K. Dwight and N. Menyuk, Phys. Rev. 1960, 119, 1470.
[92]. V. Zhao, W. Nie, X. Liu, X. Tian, Y. Zhang, X. Ji, Small 2008, 4, 77.
[93]. C.-C. Huang, N.-H. Khu, C.-S. Yeh, Biomaterials 2010, 31, 4073.
[94]. M. Yin, S. O’Brien, J. Am. Chem. Soc. 2003, 125, 10180.
[95]. H. Duan, M. Kung, X. Wang, Y. A. Wang, H. Mao, S. Nie, J. Phys. Chem. C 2008, 112, 8127.
[96]. W.-K. Koh, A. C. Bartnik, F. W. Wise and C. B. Murray, J. Am. Chem. Soc. 2010, 132, 3909.
[97]. P. Li, C. Nan, Z. Wei, J. Lu, Q. Peng, Y. Li, Chem. Mater. 2010, 22, 4232.
[98]. V. Baron, J. Gutzmer, H. Rundlöof, R. Tellgren, Am. Mineral. 1998, 83, 786.
[99]. S. Osawa, T. Kikuchi, Y. Hariya, Mineral. J. 1992, 16, 28.
[100]. K. C. Barick, M. Aslam, Y. P. Lin, D. Prasad, P. V. Bahadur, V. P. Dravid, J. Mater. Chem. 2009, 19, 7023.
[101]. G. H. Simon, J. Bauer, O. Saborovski, Y. Fu, C. Corot, M. F. Wendland, Eur. Radiol. 2006, 16, 738.
[102]. R. C. C. Costa, M. F. F. Lelis, L. C. A. Oliveira, J.-D. Fabris, J.-D. Ardisson, R. R. V. A. Rios, C. N. Silva, R.-M. Lago, J. Hazard. Mater. 2006, 129, 171.
[103]. J.-N. Park, J. K. Shon, M. Jin, S. H. Hwang, G. O. Park, J.-H. Boo, T. H. Han, J. M. Kim, Chem. Lett. 2010, 39, 493.
校內:2022-12-31公開