簡易檢索 / 詳目顯示

研究生: 黃煜鈞
Huang, Yu-Chun
論文名稱: 多重符號鍵盤應用於手機觸控操作之人因設計與使用行為探討
Ergonomic design and user behavior analysis of ambiguous keyboards on touchscreen mobile phones
指導教授: 吳豐光
Wu, Fong-Gong
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 137
中文關鍵詞: 多重符號鍵盤人因設計使用者介面
外文關鍵詞: ambiguous keyboard, ergonomic design, user interface
相關次數: 點閱:122下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前使用的智慧型手機普遍地搭載觸控螢幕,然而觸控螢幕過小的按鍵、沒有觸覺回饋的特性均帶來了操作上的種種問題,特別是在虛擬鍵盤的打字操作上,微小化的鍵盤與手指之間的互動衍生了許多人因操作的困難與錯誤。而多重符號鍵盤是過去研究最常使用來改善小按鍵的文字輸入方式,其具有按鍵較大、較少按鍵的鍵盤配置,有利於使用者於觸控螢幕上使用,然而過去的多重符號鍵盤多在嘗試將字母配置、系統預測力最佳化,卻缺乏考量使用者本身的操作經驗、知覺與動作負荷…等因素。因此本研究整理了多重符號鍵盤相關的議題,透過文獻來探討不同的多重符號鍵盤的配置,與設計多重符號鍵盤相關的人因議題,來找出設計多重符號鍵盤的關鍵因素。
    本論文之研究階段主要可分為使用者操作姿勢觀察、新式多重符號鍵盤輸入法設計、多重符號鍵盤視覺搜尋以及手部操作實驗、打字績效實驗、以及多重符號鍵盤的使用行為分析。研究結果發現不同的多重符號鍵盤,具有按鍵內字母配置較多者,在視覺搜尋上有較高的負荷,然而以按鍵數與字母數作為預測項之Hick-Hyman law無法有效預測視覺搜尋時間;而在不同的多重符號鍵盤內,平均按鍵尺寸較小的鍵盤具有較高的手部操作負荷,且以鍵盤的困難指數作為預測項之Fitts’ law能有效預測手部操作時間;再者,在不同的多符號鍵盤之間,有著視覺負荷與手部操作負荷的消長關係存在。然而透過打字績效實驗發現,過去的使用經驗確實影響其績效表現,而不同的多重符號鍵盤與不同操作姿勢的組合也會產生不同的績效表現。
    本研究成果可作為設計多重符號鍵盤之準則,如按鍵內字母數與視知覺之關係、按鍵大小與操作手部姿勢之相容性,皆可作為未來設計之參考依據。最後,本論文經由研究成果提出未來研究方向,其一為建構更為完整之多重符號鍵盤知覺認知模型,以探究更為具體之打字處理歷程;其二為提出一“適應式使用者介面”概念,希冀能透過感測科技讓行動裝置知曉使用者狀態,進而調整成最適使用者操作之鍵盤介面。

    Mobile phone touchscreens have many ergonomic problems related to text entry. Previous studies, which were attempts to use ambiguous keyboards to resolve problems related to small keys, have focused on the disambiguation process without consideration of the user loading on a graphic user interface. This study investigates user loadings, which interfere with performance in the key selection phase when people are using an ambiguous keyboard. Typing efficiency experiment related to the disambiguation phase were also conducted in this study. Hence, three QWERTY-like ambiguous keyboards and a standard QWERTY keyboard were compared via visual search, manual operation and text entry efficiency experiments. The visual search experiment showed that layouts with many letters per key were strongly related to long visual search times, and the Hick-Hyman lay failed to predict users’ performance on ambiguous keyboards. In addition, keyboard layouts with large keys were operated faster and more accurately in the manual operation experiment. In addition, users’ manual performance could be predicting by the Fitts’ law. Consequently, the trade-off between visual and manual loading differed among different letter-key assignments. In addition, the typing efficiency experiment showed the importance of previous typing experience and the compatibility between operating posture and keyboard layouts.
    This study is important in that it elucidates the impacts of visual and manual loadings on ambiguous keyboards, as well as the fact that it provides user interface designers with an enhanced understanding of how to design ambiguous keyboards based on user criteria. Meanwhile, future work could build a cognitive model of ambiguous keyboard operation based on the findings of this study, and a new concept of “adaptive user interface” was proposed based on the findings as well.

    摘要 i SUMMARY ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii LIST OF EQUATIONS x LIST OF SYMBOLS AND ABBREVIATIONS xi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 7 2.1 Ambiguous keyboards on mobile phones 7 2.2 Keyboard arrangements on ambiguous keyboards 9 2.2.1 Optimized ambiguous keyboards on mobile phones 9 2.2.2 Alphabetic-like ambiguous keyboards on mobile phones 11 2.2.3 QWERTY-like ambiguous keyboards on mobile phones 12 2.3 Previous research on ambiguous keyboards 14 2.3.1 Keyboard arrangement: optimized, alphabetic or QWERTY? 15 2.3.2 Letter-key assignments on an ambiguous keyboard 17 2.3.3 Disambiguation and correction with dictionary-based method 20 2.3.4 Evaluation criteria 22 2.4 Ergonomic aspects and principles 25 2.4.1 Fitts’ law 26 2.4.2 Hick-Hyman law 27 2.4.3 Operating postures of text entry 28 CHAPTER 3 METHOD 31 3.1 Design of new ambiguous keyboard: NineType 34 3.1.1 Design constraints of ambiguous keyboard arrangement 34 3.1.2 Design principles for letter-key assignment 36 3.1.3 Observation: users’ typing postures 36 3.1.4 The design of NineType 38 3.2 Theoretical comparison of QWERTY and three ambiguous keyboards 39 3.3 Experiment I: Visual search on different ambiguous keyboards 41 3.3.1 Participant 42 3.3.2 Apparatus 42 3.3.3 Experimental design 43 3.3.4 Procedure 43 3.4 Experiment II: Manual operation of the ambiguous keyboards 44 3.4.1 Participant 45 3.4.2 Apparatus 45 3.4.3 Experimental design 46 3.4.4 Procedure 47 3.5 Experiment III: Typing efficiency of different ambiguous keyboards 48 3.5.1 Participant 48 3.5.2 Apparatus 48 3.5.3 Experimental design 50 3.5.4 Procedure 51 CHAPTER 4 RESULTS AND ANALYSIS 52 4.1 Experiment I: Visual search on different ambiguous keyboards 52 4.1.1 Experiment I: Visual search and Hick-Hyman Law 53 4.2 Experiment II: Manual operation of the ambiguous keyboards 54 4.2.1 Manual operation time 54 4.2.2 Error rate 56 4.2.3 Coordinate 58 4.2.4 Manual operation and Fitts’ Law 60 4.3 Experiment III: Typing efficiency on different ambiguous keyboards 61 4.3.1 Text entry rate (WPM) 61 4.3.2 Error rate (ER) 63 4.3.3 Keystroke per Word (KSPW) 65 4.3.4 Average Ranked-list Position (ARP) 67 4.4 Modeling User Performance 69 CHAPTER 5 DISCUSSION 72 5.1 Experiment I: Visual search 72 5.2 Experiment II: Manual operation 73 5.2.1 Performance on manual operation 73 5.2.2 Manual operation and Fitts’ Law 75 5.3 Trade-off between visual search and manual operation 76 5.4 Experiment III: Typing efficiency 77 5.4.1 Text entry rate (WPM) 77 5.4.2 Error rates (ER) 79 5.4.3 Keystroke per Word (KSPW) 80 5.4.4 Average Ranked-list Position (ARP) 81 5.5 Modeling User Performance 82 5.6 The performance of NineType keyboard 83 CHAPTER 6 CONCLUSION 85 REFERENCES 88 Appendix A THE MODIFIED BRITISH NATIONAL CORPUS 100

    Al-Radaideh, Q. A., & Masri, K. H. (2011). Improving mobile multi-tap text entry for Arabic language. Computer Standards & Interfaces, 33(1), 108–113.
    Arnott, J., & Javed, M. (1992). Probabilistic character disambiguation for reduced keyboards using small text samples. Augmentative and Alternative Communication, 8(3), 215–223.
    Ashtiani, B., & MacKenzie, I. S. (2010). BlinkWrite2: An Improved Text Entry Method Using Eye Blinks (pp. 339–345). Presented at the Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications - ETRA '10, New York, USA: ACM Press.
    Azenkot, S., & Zhai, S. (2012). Touch behavior with different postures on soft smartphone keyboards. Presented at the MobileHCI '12: Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services,  ACM.
    Back, J., Myung, R., & Yoon, D. (2010). Applying CPM-GOMS Analysis for Predicting and Explaining Two-Handed Korean Text Entry Task on Mobile Phone. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(13), 977–981.
    Balakrishnan, V., & Paul, H. P. Y. (2010). Hand-Size Variations Effect on Mobile Phone Texting Sa Tisf Action. Ubiquitous Computing and Communication Journal, 1–8.
    Baldwin, T., & Chai, J. (2012). Towards online adaptation and personalization of key-target resizing for mobile devices. Presented at the IUI '12: Proceedings of the 2012 ACM international conference on Intelligent User Interfaces,  ACM.
    BBC. (2006, 2006/06/09). RSI danger from excessive texting. BBC News. Retrieved February 19, 2012. Available: http://news.bbc.co.uk/go/pr/fr/-/1/hi/health/5063364.stm.
    Bi, X., Smith, B. A., & Zhai, S. (2010). Quasi-qwerty soft keyboard optimization. Presented at the CHI '10: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,  ACM Request Permissions.
    Card, S. K., Moran, T. P., & Newell, A. (1980). The Keystroke-Level Model for User Performance Time with Interactive Systems. Communications of the ACM, 23(7), 396–410.
    Castellucci, S. (2007). Mobile Text Entry Using Ambiguous Keypads: New Metrics in a New Toolkit. GRADUATE PROGRAMME IN COMPUTER SCIENCE AND ENGINEERING YORK UNIVERSITY, TORONTO, ONTARIO.
    Castellucci, S. J., & MacKenzie, I. S. (2009). TnToolkit: a design and analysis tool for ambiguous, QWERTY, and on-screen keypads. Presented at the EICS '09: Proceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing systems,  ACM Request Permissions.
    Clark, J. Designing for touch (section “Rule of thumb”). Retrieved April 20, 2015. http: //www.netmagazine.com/features/designing-touch.
    Colle, H., & Hiszem, K. (2004). Standing at a kiosk: Effects of key size and spacing on touch screen numeric keypad performance and user preference. Ergonomics, 47(13), 1406–1423.
    Curtis, D. 3.5 inches. Retrieved April 20, 2015. http://dcurt.is/3-point-5-inches.
    Drury, C. G., & Hoffmann, E. R. (1992). A Model for Movement Time on Data-Entry Keyboards. Ergonomics, 35(2), 129–147.
    Dunlop, M. D. (2004). Watch-Top Text-Entry: Can Phone-Style Predictive Text-Entry Work with Only 5 Buttons? In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, et al. (Eds.), (Vol. 3160, pp. 342–346). Presented at the Mobile Human-Computer Interaction–MobileHCI 2004, Berlin, Heidelberg: Springer Berlin Heidelberg.
    Dunlop, M. D., & Crossan, A. (2000). Predictive text entry methods for mobile phones. Personal Technologies, 4(2-3), 134–143.
    Dunlop, M. D., & Montgomery Masters, M. (2008). Investigating five key predictive text entry with combined distance and keystroke modelling. Personal and Ubiquitous Computing, 12(8), 589–598.
    Dunlop, M. D., Durga, N., Motaparti, S., Dona, P., & Medapuram, V. (2012). QWERTH: an optimized semi-ambiguous keyboard design. Presented at the MobileHCI '12: Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services companion,  ACM.
    Dunlop, M., & Levine, J. (2012). Multidimensional pareto optimization of touchscreen keyboards for speed, familiarity and improved spell checking. Presented at the Proceedings of the SIGCHI conference on Human.
    Egeth, H., Atkinsons, J., Gilmore, G., & Marcus, N. (1973). Factors affecting processing mode in visual search. Perception & Psychophysics, 13(3), 394–402.
    Egeth, H., Jonides, J., & Wall, S. (1972). Parallel processing of multielement displays. Cognitive Psychology, 3(4), 674–698.
    Eggers, J., Feillet, D., Kehl, S., Wagner, M. O., & Yannou, B. (2003). Optimization of the keyboard arrangement problem using an Ant Colony algorithm. European Journal of Operational Research, 148(3), 672–686.
    Eriksen, C. W., & Hoffman, J. E. (1973). The extent of processing of noise elements during selective encoding from visual displays. Perception & Psychophysics, 14 (1), 155-160.
    Eriksen, C. W., & St James, J. D. (1986). Visual attention within and round the field of focal attention: A zoom lens model. Perception & Psychophysics, 40, 225–240.
    Foulds, R., Soede, M., & van Balkom, H. (1987). Statistical disambiguation of multi-character keys applied to reduce motor requirements for augmentative and alternative communication. Augmentative and Alternative Communication, 3(4), 192–195.
    Frey, B., Southern, C., & Romero, M. (2011). Brailletouch: mobile texting for the visually impaired. Universal Access in Human-Computer Interaction. Context Diversity, 19–25.
    Gold, J. E., Driban, J. B., Thomas, N., Chakravarty, T., Channell, V., & Komaroff, E. (2012). Postures, typing strategies, and gender differences in mobile device usage: An observational study. Applied Ergonomics, 43(2), 408–412.
    Goldstein, M., Book, R., Alsio, G., & Tessa, S. (1999). Non-Keyboard QWERTY Touch Typing: A Portable Input Interface For The Mobile User (pp. 32–39). Presented at the Proceedings of the SIGCHI conference on Human factors in computing systems: the CHI is the limit.
    Gong, J., & Tarasewich, P. (2005a). Alphabetically constrained keypad designs for text entry on mobile devices (pp. 211–220). Presented at the CHI '05 Proceedings of the SIGCHI conference on Human factors in computing systems, New York, New York, USA: ACM.
    Gong, J., & Tarasewich, P. (2005b). Testing predictive text entry methods with constrained keypad designs. Presented at the Proceedings of Human Computer Interfaces International (HCII 05), Citeseer.
    Gong, J., Haggerty, B., & Tarasewich, P. (2005). An Enhanced Multitap Text Entry Method with Predictive Next-Letter Highlighting (pp. 1–4). Presented at the CHI '05 extended abstracts on Human factors in computing systems.
    Gong, J., Tarasewich, P., & MacKenzie, I. S. (2008). Improved word list ordering for text entry on ambiguous keypads (pp. 152–161). Presented at the NordiCHI '08 Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges, New York: ACM: ACM.
    Green, N., Kruger, J., Faldu, C., & Amant, R. S. (2004). A Reduced QWERTY Keyboard for Mobile Text Entry (pp. 1429–1432). Presented at the Extended Abstracts of the ACM Conference on Human Factors in Computing Systems—CHI 2004, New York: ACM Press.
    Henze, N., Rukzio, E., & Boll, S. (2012). Observational and Experimental Investigation of Typing Behaviour using Virtual Keyboards on Mobile Devices. Presented at the CHI '12: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
    Hoffmann, E., Tsang, K., & Mu, A. (1995). Data-entry keyboard geometry and keying movement times. Ergonomics, 38(5), 940–950.
    Hoggan, E., Brewster, S. A., & Johnston, J. (2008). Investigating the effectiveness of tactile feedback for mobile touchscreens (pp. 1573–1582). Presented at the CHI '08 Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, ACM.
    Hoober, S. How do users really hold mobile devices? Retrieved August 15, 2015. http://www.uxmatters.com/mt/archives/2013/02/ how-do-users-really-hold-mobile-devices.php.
    How, Y. Analysis of SMS Efficiency. Undergraduate Thesis. National University of Singapore, 2004
    Huang, Y.-C., & Wu, F.-G. (2013). NineType: An Ergonomic Ambiguous Keyboard Design (pp. 5058–5067). Presented at the 5th International Congress of International Association of Societies of Design Research, Tokyo.
    Hwang, S., & Lee, G. (2005). Qwerty-like 3x4 keypad layouts for mobile phone (pp. 1479–1482). Presented at the CHI EA “05 CHI ”05 extended abstracts on Human factors in computing systems, ACM.
    John, B. E., & Kieras, D. E. (n.d.). The GOMS family of user interface analysis techniques: comparison and contrast. Acm Transactions on Computer-Human Interaction, 3, 320–351.
    Kane, S. K., Wobbrock, J. O., Harniss, M., & Johnson, K. L. (2008). TrueKeys: Identifying and correcting typing errors for people with motor impairments (pp. 349–352). Presented at the Proc. of IUI’08, Citeseer.
    Kao, R., & Sarigumba, D. (2010). BlackBerry Pearl 3G for Dummies. John Wiley & Sons.
    Kühn, M., & Garbe, J. (2001). Predictive and highly ambiguous typing for a severely speech and motion impaired user. Presented at the Universal Access in Human–Computer Interaction (Proceedings of UAHCI-2001). Lawrence Erlbaum Associates.
    Kwon, S., Lee, D., & Chung, M. K. (2009). Effect of key size and activation area on the performance of a regional error correction method in a touch-screen QWERTY keyboard. International Journal of Industrial Ergonomics, 39(5), 888–893.
    LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9, 371–379.
    Lee, S., & Zhai, S. (2009). The performance of touch screen soft buttons (pp. 309–318). Presented at the CHI '09 Proceedings of the 27th international conference on Human factors in computing systems, New York, New York, USA: ACM.
    Lesher, G. W. G., Moulton, B. J. B., & Higginbotham, D. J. D. (1998). Optimal character arrangements for ambiguous keyboards. Rehabilitation Engineering, IEEE Transactions on, 6(4), 415–423.
    Levine, S. H., & Goodenough-Trepagnier, C. (1990). Customised text entry devices for motor-impaired users. Applied Ergonomics, 21(1), 55–62.
    Levine, S. H., Trepagnier, G. C., Getschow, C. O., & Minneman, S. L. (1987). Multi-character key text entry using computer disambiguation (pp. 177–178). Presented at the RESNA 10th Annual Conference, San Jose, California.
    Li, F. C. Y., Guy, R. T., Yatani, K., & Truong, K. N. (2011). The 1Line keyboard: a QWERTY layout in a single line (pp. 461–470). Presented at the Proceedings of the 24th annual ACM symposium on User interface software and technology, ACM.
    Li, Y., Chen, L., & Goonetilleke, R. S. (2006). A heuristic-based approach to optimize keyboard design for single-finger keying applications. International Journal of Industrial Ergonomics, 36(8), 695–704.
    Liu, X., Crump, M. J. C., & Logan, G. D. (2010). Do you know where your fingers have been? Explicit knowledge of the spatial layout of the keyboard in skilled typists. Memory & Cognition, 38(4), 474–484.
    Logan, G. D. (2003). Simon-Type Effects: Chronometric Evidence for Keypress Schemata in Typewriting. Journal of Experimental Psychology: Human Perception and Performance, 29(4), 741–757.
    MacKenzie, I.S., 1989. A note on the information-theoretic basis for Fitts' law. J. Mot. Behav. 21, 323e330.
    MacKenzie, I. S. (2002). KSPC (Keystrokes per Character) as a Characteristic of Text Entry Techniques (pp. 195–210). Presented at the Mobile HCI '02 Proceedings of the 4th International Symposium on Mobile Human-Computer Interaction.
    MacKenzie, I. S. (2009). The one-key challenge: searching for a fast one-key text entry method (pp. 91–98). Presented at the Proceedings of the ACM Conference on Computers and Accessibility – ASSETS 2009, New York, New York, USA: ACM.
    MacKenzie, I. S. (2013). Human-computer interaction: An empirical research perspective. Waltham, MA: Morgan Kaufmann.
    MacKenzie, I. S., & Felzer, T. (2010). SAK: Scanning Ambiguous Keyboard for Efficient One-Key Text Entry. Acm Transactions on Computer-Human Interaction, 17(3).
    MacKenzie, I. S., & Soukoreff, R. W. (2002a). A model of two-thumb text entry. Presented at the Proceedings of Graphics Interface 2002, Toronto: Canadian Information Processing Society.
    MacKenzie, I. S., & Soukoreff, R. W. (2003). Phrase sets for evaluating text entry techniques (pp. 754–755). Presented at the Extended Abstracts of the ACM Conference on Human Factors in Computing Systems - CHI 2003.
    MacKenzie, I. S., & Tanaka-Ishii, K. (2007). Text Entry Using a Small Number of Buttons. In I. S. MacKenzie & K. Tanaka-Ishii (Eds.), Text entry systems: Mobility, accessibility, universality (pp. 105–121). San Francisco: CA: Morgan Kaufmann.
    MacKenzie, I. S., & Zhang, S. X. (2001). An empirical investigation of the novice experience with soft keyboards. Behaviour & Information Technology, 20(6), 411–418.
    MacKenzie, I. S., ZHANG, S. X., & Soukoreff, R. W. (1999). Text entry using soft keyboards. Behaviour & Information Technology, 18(4), 235–244.
    MacKenzie, S., & Soukoreff, R. W. (2002b). Text Entry for Mobile Computing: Models and Methods, Theory and Practice. Human-Computer Interaction, 17(2&3), 147–198.
    Malt, L. G. (1977). Keyboard design in the electronic era. In Printing Industry Research Association, Symposium Paper.
    Matias, E., MacKenzie, I. S., & Buxton, W. (1993, May). Half-QWERTY: A one-handed keyboard facilitating skill transfer from QWERTY. In Proceedings of the INTERACT'93 and CHI'93 Conference on Human Factors in Computing Systems (pp. 88-94). ACM.
    McGovern, Farrell. (1992). Why a QWERTY Keyboard? Hardware and Environmental Factors, Retrieved April 22, 2011. http://www.userlab.com/Downloads/QWERTY.PDF.
    McLoone, H., Hinckley, K., & Cutrell, E. (2003). Bimanual Interaction on the MicrosoftR OfficeR Keyboard (pp. 49–56). Presented at the Human-computer interaction: INTERACT'03; IFIP TC13 International Conference on Human-Computer Interaction, Zurich, Switzerland: Ios Pr Inc.
    Merlin, B., & Raynal, M. (2010). Evaluation of SpreadKey System with Motor Impaired Users (Vol. 6180, pp. 112–119). Presented at the Computers Helping People with Special Needs, 12th International Conference, ICCHP 2010, Vienna, Austria, July14-16, 2010, Proceedings, Part II.
    Miró-Borrás, J., Bernabeu-Soler, P., Llinares, R., & Igual, J. (2009). Ambiguous Keyboards and Scanning: The Relevance of the Cell Selection Phase. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, et al. (Eds.), (Vol. 5727, pp. 1–4). Presented at the Proceedings of 12th IFIP Conference on Human-Computer Interaction INTERACT 2009, Berlin, Heidelberg: Springer Berlin Heidelberg.
    Mizobuchi, S., Mori, K., Ren, X., & Michiaki, Y. (2002). An empirical study of the minimum required size and the minimum number of targets for pen input on the small display (pp. 184–194). Presented at the Lecture Notes in Computer Science: Human Computer Interaction with Mobile Devices, Springer.
    Mou, W., & Zhang, K. (2001). A compatible chord code for inputting elements of Chinese characters. Applied Ergonomics, 32(3), 293–297.
    Norman, D. A., & Fisher, D. (1982). Why Alphabetic Keyboards Are Not Easy to Use: Keyboard Layout Doesn't Much Matter. Human Factors: the Journal of the Human Factors and Ergonomics Society, 24(5), 509–519.
    NUANCE, 2007. XT9 Smart Input, 2007. Retrieved May 17, 2013. http://www.nuance.com/t9/xt9/. Accessed January 30, 2007.
    Oommen, B. J., Valiveti, R. S. & Zgierski, J .R. “An Adaptive Learning Solution to the Keyboard Optimization Problem,"IEEE Transactions on Systems, Man, Cybernetics, Volume: 21, No. 6, November/December, 1991.
    Ostrach, T. (1997). Typing Speed: How Fast is Average: 4,000 typing scores statistically analyzed and interpreted. Retrieved October 12, 2011, from http://www.keybowl.com/sites/default/files/Average%20Typing%20Speed%20Research.pdf
    Parhi, P., Karlson, A. K., & Bederson, B. B. (2006). Target size study for one-handed thumb use on small touchscreen devices. Presented at the Proceedings of the 8th conference on Human-computer interaction with mobile devices and services.
    Park, Y. S., & Han, S. H. (2010a). One-handed thumb interaction of mobile devices from the input accuracy perspective. International Journal of Industrial Ergonomics, 40(6), 746–756.
    Park, Y. S., & Han, S. H. (2010b). Touch key design for one-handed thumb interaction with a mobile phone: Effects of touch key size and touch key location. International Journal of Industrial Ergonomics, 40(1), 68–76.
    Pavlovych, A., & Stuerzlinger, W. (2003). Less-Tap: A fast and easy-to-learn text input technique for phones (pp. 97–104). Presented at the Graphics Interface '03, Waterloo, Ontario.
    Perry, K. B., & Hourcade, J. P. (2008). Evaluating one handed thumb tapping on mobile touchscreen devices (pp. 57–64). Presented at the GI '08 Proceedings of graphics interface, Canadian Information Processing Society.
    Ryu, H., & Cruz, K. (2005). LetterEase: Improving text entry on a handheld device via letter reassignment (pp. 1–10). Presented at the Proceedings of OZCHI 2005, Canberra, Australia: Computer-Human Interaction Special Interest Group (CHISIG) of Australia.
    Sandnes, F. E., & Aubert, A. (2007). Bimanual text entry using game controllers: Relying on users’ spatial familiarity with QWERTY. Interacting with Computers, 19(2), 140–150.
    Sandnes, F. E., Thorkildssen, H. W., Arvei, A., & Buverad, J. O. (2004). Techniques for fast and easy mobile text-entry with three-keys (p. 10 pp.). Presented at the System Sciences, 2004. Proceedings of the 37th Annual Hawaii International Conference on System Science, IEEE.
    Schedlbauer, M. (2007). Effects of key size and spacing on the completion time and accuracy of input tasks on soft keypads using trackball and touch input (Vol. 51, pp. 429–433). Presented at the Proceedings of the Human Factors and Ergonomics Society Annual Meeting, SAGE Publications.
    Sears, A., & Zha, Y. (2003). Data Entry for Mobile Devices Using Soft Keyboards: Understanding the Effects of Keyboard Size and User Tasks. International Journal of Human-Computer Interaction, 16(2), 163–184.
    Sears, A., Jacko, J. A., Chu, J., & Moro, F. (2001). The role of visual search in the design of effective soft keyboards. Behaviour & Information Technology, 20(3), 159–166.
    Sheik-Nainar, M. (2010). Contact location offset to improve small target selection on touchscreens (Vol. 54, pp. 610–614). Presented at the Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting, SAGE Publications.
    Shieh, K. & Lin, C., 1999. A quantitative model for designing keyboard layout. Perceptual and Motor Skills 88 (1), 113–125.
    Silfverberg, M., MacKenzie, I. S., & Korhonen, P. (2000). Predicting text entry speed on mobile phones (pp. 9–16). Presented at the CHI, New York, New York, USA: ACM.
    Sorensen, K. (2007). Multi-objective optimization of mobile phone keymaps for typing messages using a word list. European Journal of Operational Research, 179(3), 838–846.
    Tan, K. C. F., Ng, E., & Oh, J. J. S. (2003). Development of a Qwerty-Type Reduced Keyboard System for Mobile Computing: Tengo (Vol. 47, pp. 855–859). Presented at the Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting, SAGE Publications.
    Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2002). Entering Text with A Four-Button Device (Vol. 1, pp. 1–7). Presented at the Proceedings of the 19th international conference on Computational linguistics, Morristown, NJ, USA: Association for Computational Linguistics.
    Trudeau, M. B., Asakawa, D. S., Jindrich, D. L., & Dennerlein, J. T. (2016). Two-handed grip on a mobile phone affords greater thumb motor performance, decreased variability, and a more extended thumb posture than a one-handed grip. Applied Ergonomics, 52, 24–28.
    Trudeau, M. B., Young, J. G., Jindrich, D. L., & Dennerlein, J. T. (2012). Thumb motor performance varies with thumb and wrist posture during single-handed mobile phone use. Journal of Biomechanics, 45(14), 2349–2354. http://doi.org/10.1016/j.jbiomech.2012.07.012
    Wagner, M., Yannou, B., Kehl, S., Feillet, D., & Eggers, J. (2003). Ergonomic modelling and optimization of the keyboard arrangement with an ant colony algorithm. Journal of Engineering Design, 14(2), 187–208.
    Wang, F., & Ren, X. (2009). Empirical evaluation for finger input properties in multi-touch interaction (pp. 1063–1072). Presented at the CHI '09 Proceedings of the 27th international conference on Human factors in computing systems, ACM.
    Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., & Shen, C. (2007a). Lucid touch: a see-through mobile device (pp. 269–278). Presented at the UIST '07 Proceedings of the 20th annual ACM symposium on User interface software and technology, ACM.
    Wigdor, D., Penn, G., Ryall, K., Esenther, A., & Shen, C. (2007b). Living with a Tabletop: Analysis and Observations of Long Term Office Use of a Multi-Touch Table (pp. 60–67). Presented at the Second Annual IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP'07), IEEE.
    William Soukoreff, R., & Scott MacKenzie, I. (1995). Theoretical upper and lower bounds on typing speed using a stylus and a soft keyboard. Behaviour & Information Technology, 14(6), 370–379.
    Wobbrock, J. O., Cutrell, E., Harada, S., & MacKenzie, I. S. (2008). An error model for pointing based on Fitts' law. Presented at the CHI '08: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,  ACM Request Permissions.
    Wroblewski, L. Responsive navigation: Optimizing for touch across devices. Retrieved June 20, 2013. http://www.lukew.com/ff/entry.asp?1649.
    Wu, F.-G., Huang, Y.-C., & Wu, M.-L. (2014). New chording text entry methods combining physical and virtual buttons on a mobile phone. Applied Ergonomics, 45(4), 825–832.
    Yatani, K., & Truong, K. N. (2009). An evaluation of stylus-based text entry methods on handheld devices studied in different user mobility states. Pervasive and Mobile Computing, 5(5), 496–508.
    Zhai, S., & Kristensson, P.-O. (2008). Interlaced QWERTY: accommodating ease of visual search and input flexibility in shape writing. Presented at the CHI '08: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,  ACM Request Permissions.
    Zhai, S., Sue, A., & Accot, J. (2002). Movement Model, Hits Distribution and Learning in Virtual Keyboarding (pp. 17–24). Presented at the Proceedings of the SIGCHI conference on Human factors in computing systems Changing our world, changing ourselves - CHI '02, New York, New York, USA: ACM Press.

    下載圖示 校內:2018-07-16公開
    校外:2018-07-16公開
    QR CODE