簡易檢索 / 詳目顯示

研究生: 張德威
Chang, De-Wei
論文名稱: 飲用水源中有害藻體及代謝物監測與破壞技術之研究
Monitoring and Destruction of Harmful Cyanobacteria and Metabolites in Sources of Drinking Water
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 190
中文關鍵詞: 藍綠藻藻類快速分析技術細胞破裂氫氧自由基
外文關鍵詞: Cyanobacteria, Rapid measurement, cell rupture, hydroxyl radical
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍綠藻(cyanobacteria)以及其所產生之毒素與臭味物質已被證實為飲用水中影響人體生命安全之主要因素之一。為能有效偵測並去除水中藍綠藻及其代謝物質,本研究首先針對快速偵測藻藍蛋白之胞內螢光偵測法進行探討。在該研究中,藍藻種類、藻體生長期、水中色素(chlorophyll-a)、濁度以及細胞型態(團粒現象)皆可影響螢光偵測法測定水中藍綠藻濃度之結果。在色素與濁度的測試上,頂脊藻(Chodatella sp.)所含有之葉綠素與高嶺土所形成之濁度被應用在研究中進行螢光偵測法之干擾測試,結果顯示色素與濁度的存在將大幅影響藻藍蛋白螢光測定之準確度,干擾程度呈等比例上升。在細胞型態的影響上,藉由Microcystis aeruginosa PCC 7005於實驗室培養時會形成不同團粒大小之特性,進行團粒型藻體對螢光偵測法之干擾測試,其結果利用一理論模式進行模擬,並將該模式應用於台灣數座水庫中,成功修正藻體團粒對於藻藍蛋白螢光偵測法之干擾。
    在胞內螢光偵測法可有效應用於水中藻類濃度之偵測後,利用氧化劑進行水體氧化,藉以抑制藻體數量,使其不至形成藻華。然而,以往的殺藻劑多以硫酸銅、氯等化學物質為主,雖可有效破壞藻體,但也造成代謝物包括毒素、臭味物質的釋出,而氧化後的水體中亦可能殘留或形成其他對人體有害之化學物質。因此,本研究針對新型殺藻劑進行開發,藉由過氧化氫經由擬太陽光燈管之照射後,轉化形成之氫氧自由基進行藻體破壞。研究中針對可產生臭味物質geosmin之捲曲魚腥藻 (Anabaena circinalis)進行測試,分別測試藻體在黑暗與不同光照強度下,過氧化氫/氫氧自由基對細胞及其所釋放的代謝物質之破壞程度。過氧化氫濃度為10 ~ 60 mg/L,而氧化時間則為三個小時內,光照強度控制在0 ~ 100 W/m2。其結果顯示,光照強度可影響過氧化氫轉換為氫氧自由基之速率,而氫氧自由基對魚腥體細胞破壞之動力參數為4.7 * 109 M-1 S-1。研究中利用動力模擬之質量平衡方程式,藉由細胞破裂、代謝物釋出及自由基降解代謝物之結果,模擬並成功的預測代謝物質geosmin在系統中釋出並降解之現象。本研究也成功應用了流式細胞儀搭配螢光染劑的方式,有效並快速的偵測細胞在氧化過後的殘餘活性。藉由本研究之結果,成功的證實了過氧化氫/氫氧自由基可有效的針對藍綠藻細胞進行破壞,並同時降解藻體釋出之代謝物質。
    在新型殺藻劑的開發上,氮參雜的二氧化鈦結合可見光之光觸媒技術應用,已成功地利用澳大利亞水質中心培養之Anabaena circinalis 318CR與Microcystis aeruginosa 338 進行初步的藻體破壞測試。研究中利用掃描式電子顯微鏡針對改良之二氧化鈦表面進行觀察,並應用X-ray photoelectron spectroscopy (XPS)與Visible-UV証實二氧化鈦基本性質已由於氮原子之參雜,而使其對於光之吸收由紫外光光譜紅移至可見光區段,且其能隙由理論值之3.2eV降低為2.99eV,顯示該材料可經由可見光之照射進而造成電子躍遷,進而產生氫氧自由基。研究中應用改良型二氧化鈦對於A. circinalis及M. aeruginosa 去除效率之最佳化進行測試,發現N/Ti 比例為20%、二氧化鈦濃度20 mg/L與10mg/L之過氧化氫對於藻體有最大的破壞效果;於40分鐘的接觸時間後,藻體完整性將低於5%。研究中應用2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) 能與自由基反應進而產生螢光物質之特性,證實藻體內氫氧自由基之濃度可在氧化60分鐘後於A. circinalis及M. aeruginosa分別增高3.2倍與2.5倍。研究中亦將改良型二氧化鈦固定於石英板,並將其放置於氧化槽中,藉以將二氧化鈦與水體分離。結果發現,由於藻體與氧化劑的接觸情況改變,自由基無法完全破壞藻體生長機能,氧化後未完全破壞的藻體細胞將於五天後重新生長,且A. circinalis具有比M. aeruginosa更強的再生能力。
    氧化劑的添加並非去除藻體活性的唯一方式。藻類代謝物質β-cyclocitral (木頭味,β-檸檬醛)被應用於測試其對於不同藻類的細胞活性之影響。測試的藻種分別為銅綠微囊藻Microcystis aeruginosa PCC 7005 、PCC 7820以及谷皮菱形藻Nitzschia palea,差別在於產生β-cyclocitral之能力為PCC 7820 > PCC 7005 > N. palea。研究中利用掃描式電子顯微鏡觀察與β-cyclocitral 接觸後的藻體表面,發現細胞隨著暴露時間的多寡而有不同程度的細胞破損。流式細胞儀的應用則觀察到細胞完整性下降,且藻細胞的葉綠素亦有降低之情形。藻體在抵抗β-cyclocitral破壞的強度則與其產生β-cyclocitral的能力成正比關係,β-cyclocitral約5 ~ 10 mg/L在同樣的時間下可破壞15 ~ 20%的微囊藻細胞,相對於菱形藻僅需0.1 ~ 0.5 mg/L的劑量即可達到同樣的效果。一階動力方程式的應用顯示細胞破裂的程度與β-cyclocitral之劑量有相關性,此數據亦可瞭解β-cyclocitral影響微囊藻及菱形藻細胞活性所需之劑量與時間。本研究利用β-cyclocitral對於非該物質產生者之細胞活性影響結果顯示,藻體代謝物除可造成人體健康風險外,亦有可能是其在面對物種競爭上維持其能持續生存的物質之一。

    The effect of calibrated range, algal growth phase, chlorophyll-a, turbidity and colony structure, on measurement of phycocyanin by in-vivo fluoroscopy (IVF) was investigated. Microcystis aeruginosa PCC 7820, Anabaena circinalis and Planktothricoides raciborskii were used to investigate variation in phycocyanin content in the different cyanobacteria and growth phases. The green alga, Chodatella sp., and Kaolin particles were used as the sources of chlorophyll-a and turbidity respectively to examine how turbidity can impact on phycocyanin measurements. Another cyanobacterium, Microcystis aeruginosa PCC 7005, which forms large colonies, was used to investigate the relationships between colony size and phycocyanin levels measured using IVF. Experimental results showed that chlorophyll-a, turbidity, and colonial cyanobacteria significantly interfered with the measurement of phycocyanin fluorescence. Models were developed to compensate for the effect of chlorophyll-a, turbidity and colony size on the measurement. The models were successfully used to correct phycocyanin probe data collected from several reservoirs in Taiwan to produce cell counts with good correlation between measurements made using the phycocyanin probe and microscopy.
    The application of free radical became a novel conception to control cyanobacterial bloom and their metabolites at the same time. In this study, effects of the oxidation by hydroxyl radical transformed from hydrogen peroxide on the cell lysis, release and decay of the metabolite from a geosmin producer-Anabaena circinalis were investigated. The toxicity of hydroxyl radical was researched to develop a potential tool for limiting and controlling the cyanobacterial blooms. The cyanobacterium Anabaena circinalis was tested under exposure to H2O2/OH radical in the dark and at the various irradiances. H2O2 was decomposed at rates depending on the intensity of illumination. A. circinalis was affected by H2O2 at 10 ~ 60 mg/L within 3 hr and the toxicity for algal cells was increased by light enhanced because of the release rate of OH radical. A pseudo first-order rate model was used to simulate the kinetics of cell rupture during the oxidative experiments, the value were 4.7 * 109 M-1 S-1 at the light intensity of 0 ~ 100 W/m2. An equation of dynamical system was applied to predict the simulation of the cell lysis, release and degradation of geosmin using the hydroxyl radical transformed from hydrogen peroxide combined with the sunlight-like. Geosmin was found released into water immediately after the cell lysis, and the cell integrity measurement using cell staining techniques correlated closely with geosmin release into solution.
    Effects of visible-light photocatalysis using N-doped TiO2/H2O2 on the cell rupture and metabolite release from cyanobacteria Anabaena circinalis and Microcystis aeruginosa are investigated. A scanning electron microscopy coupled with an X-ray photoelectron spectroscopy (XPS) was employed to evidence that the crystal lattices of TiO2 were successfully modified with N-atoms, while a UV-Visible spectrometer was used to observe the shift of absorption wavelength for the modified photocatalyst. The doping process successfully shifted the absorption wavelength from 387.5 to 399 nm and decreased the gap band from 3.2 to 2.99 eV. A series of experiments with different doses of N-TiO2 and H2O2 were conducted to determine the effect on the studied cyanobacteria. Experimental results show that A. circinalis was more resistant than M. aeruginosa to the free radicals produced by N-doped TiO2. Combined doses of N- TiO2 at 20mg/L (N/Ti ratio 20%) and H2O2 at 10 mg/L had the host destruction capacity for the tested cells in this study, with cell viability decreased to be less than 5% after 40 min of exposure. Measurement of reactive oxygen species (ROS) inside of cyanobacteria with a fluorescent dye 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) indicated that the levels of ROS increased by 3.2 and 2.5 times in A. circinalis and M. aeruginosa after 60 min of oxidation. To mimic field application, cyanobacteria-laden water was allowed to flow through a column installed with glass plates coated with N-doped TiO2. The results showed that cells remain integral for the system without the photocatalyst. However, with the presence of the photocatalyst, cyanobacteria cells were readily ruptured and causing release of metabolites.
    The algaecide doesn’t necessarily come from those chemicals which have the oxidative capability. Finally, the effect of an algal metabolite, β-cyclocitral, on the cell integrity of two cyanobacteria and a diatom was investigated. The cyanobacteria, Microcystis aeruginosa PCC 7005 and PCC 7820, and the diatom, Nitzschia palea, were exposed to various concentrations of β-cyclocitral. Scanning electron microscopy (SEM) results indicate that the cells of tested species were greatly altered after being exposed to β-cyclocitral. A flow cytometer coupled with the SYTOX stain and chlorophyll-a auto-fluorescence was used to quantify the effect of β-cyclocitral on cell integrity for the tested cyanobacteria and diatom. Kinetic experiments show that about 5-10 mg L-1 of β-cyclocitral for the two M. aeruginosa strains and a much lower concentration, 0.1-0.5 mg L-1, for N. palea were needed to cause 15-20% of cells to rupture. When the β-cyclocitral concentration was increased to 200-1000 mg L-1 for M. aeruginosa and 5-10 mg L-1 mg L-1 for N. palea, almost all the cells ruptured between 8-24 hr. A first-order kinetic model is able to describe the data of cell integrity over time. The extracted rate constant values well correlate with the applied β-cyclocitral dosages. The obtained kinetic parameters may be used to estimate β-cyclocitral dosage and contact time required for the control of cyanobacteria and diatoms in water bodies.

    Abstract (In Chinese) I Abstract V Acknowledgements IX Table of Contents XI List of Figures XV List of Tables XVII Chapter I: Introduction 1 1.1 Background 1 1.2 Literature Review 2 1.2.1 Cyanobacteria 2 1.2.2 Cyanobacterial metabolites 2 1.2.3 Importance of cyanobacteria and metabolites in drinking water 3 1.2.4 The technologies on measuring cyanobacteria 5 1.2.5 Application of oxidants on the removal of cyanobacteria 8 1.3 Proposes and Objectives 12 1.4 Dissertation Overview 13 Chapter II: Measurement of Cyanobacteria using In-vivo Fluoroscopy - effect of cyanobacterial species, pigments, and colonies 29 2.1 Introduction 30 2.2 Experimental Methods 33 2.2.1 Cell cultures 33 2.2.2 Cell counting 34 2.2.3 In-vivo fluorescent detection 34 2.2.4 Influence of turbidity and chlorophyll-a 35 2.2.5 Measurement of aggregated cell colonies in laboratory cultures 35 2.2.6 Particle size distribution of aggregates 36 2.3 Results and Discussion 36 2.3.1 The accuracy of the fluoro-probe at different calibration ranges 36 2.3.2 Phycocyanin in different cyanobacteria species and under different growth phases 38 2.3.3 Effect of turbidity and chlorophyll-a on the measurement of phycocyanin 40 2.3.4 Effect of colonies on the measurement on phycocyanin and cell number 43 2.3.5 Measurement and prediction in the field 46 2.3.6 Combination of particle size and phycocyanin measurement 48 2.4 Conclusion 49 Chapter III: Exposure of a Cyanobacterium Anabaena circinalis to Hydrogen Peroxide under Sunlight-like Conditions: Cell Lysis, Geosmin Degradation, and Kinetic Modeling 67 3.1 Introduction 68 3.2 Materials and Methods 72 3.2.1 Cell culture and counting 72 3.2.2 Oxidation by Hydrogen peroxide 72 3.2.3 Determination of Cell Integrity 74 3.2.4 Analysis 75 3.3 Results and Discussion 77 3.3.1 Degradation of hydrogen peroxide 77 3.3.2 Cell Integrity of A. circinalis under different doses and light intensities 78 3.3.3 Estimation of hydroxyl radical production 79 3.3.4 Modeling kinetics of cell rupture 81 3.3.5 Modeling release and degradation of geosmin 83 3.3.6 Applications 87 Chapter IV: Effect of N-doped Titanium Dioxide on Cyanobacterial Cell Lysis under Visible Light Exposure in Water 99 4.1 Introduction 100 4.2 Materials and Methods 102 4.2.1 Cell culture and counting 102 4.2.2 N-doped titanium dioxide 103 4.2.3 Oxidation Experiments 103 4.2.4 Measurement of cell integrity 104 4.2.5 Measurement of reactive oxygen species (ROS) intensity 106 4.2.6 Column Experiments 106 4.2.7 Analysis 107 4.3 Results and Discussion 108 4.3.1 Properties of TiO2 and N-Doped TiO2 108 4.3.2 Influence on cell integrity of cyanobacteria using N-doped TiO2 110 4.3.3 Combination of H2O2 with N-doped TiO2 111 4.3.4 Variation of intracellular reactive oxygen species (ROS) intensity in cells 115 4.3.5 Column tests 116 4.3.6 Kinetics of cell rupture 118 4.4 Conclusions 118 Chapter V: Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-cyclocitral 133 5.1 Introduction 134 5.2 Materials and Methods 136 5.2.1 Cell cultures 136 5.2.2 Cell counting 137 5.2.3 Cell rupture by β-cyclocitral 137 5.2.4 Analysis of cell integrity 138 5.2.5 Observation of cell surface 139 5.3 Results and Discussion 139 5.3.1 Change of surface morphology of cells 139 5.3.2 Change of fluorescence and cell integrity 140 5.3.3 Effect of β-cyclocitral on cell integrity 142 5.3.4 Kinetics of cell rupture 143 5.4 Conclusions 145 Chapter VI: Conclusions 155 6.1 Summary 155 6.2 Implications and future research directions 158 6.3 Closing remark 160 References 161 VITA 187

    Acero, J.L., Rodriguez, E. and Meriluoto, J. (2005) Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research 39(8), 1628-1638.
    Acero, J.L., Rodriguez, E., Majado, M.E., Sordo, A. and Meriluoto, J. (2008) Oxidation of microcystin-LR with chlorine and permanganate during drinking water treatment. Journal of Water Supply Research and Technology-Aqua 57(6), 371-380.
    Alberici, R.M. and Jardim, W.F. (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B: Environmental 14(1-2), 55-68.
    Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269-271.
    Atkins, P.W. (1986) Physical chemistry, Freeman and Co, New York.
    APHA, AWWA, and WPCF (2006) Supplement to standard methods for the examination of water and wastewater, 21th ed., Washington, D.C..
    Banerjee, M., Ballal, A. and Apte, S. (2012) A novel glutaredoxin domain-containing peroxiredoxin "All1541" protects the N2-fixing cyanobacterium Anabaena PCC 7120 from oxidative stress. Biochemical Journal doi:10.1042/BJ20111877.
    Barkoh, A., Smith, D.G. and Southard, G.M. (2010) Prymnesium parvum control treatments for fish hatcheries. Journal of the American Water Resources Association 46(1), 161-169.
    Barrington, D.J., Ghadouani, A. and Ivey, G.N. (2011) Environmental factors and the application of hydrogen peroxide for the removal of toxic cyanobacteria from waste stabilization ponds. Journal of Environmental Engineering-Asce 137(10), 952-960.
    Barroin, G. and Feuillade, M. (1986) Hydrogen peroxide as a potential algicide for Oscillatoria rubescens DC. Water Research 20(5), 619-623.
    Bartram, J., Burch, M., Falconer, I.R., Jones, G. and Kuiper-Goodman, T. (1999) Chapter 6. Situation assessment, planning and management, in toxic cyanobacteria in water, 1999, pp. 183–210, ed. I. Chorus, and J. Bartram, E & FN Spon, London, UK.
    Bastien, C., Cardin, R., Veilleux, E., Deblois, C., Warren, A. and Laurionb, I. (2011) Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. Journal of Environmental Monitoring 13(1), 110-118.
    Becker, S. (2010) Biotic factors in induced defence revisited: cell aggregate formation in the toxic cyanobacterium Microcystis aeruginosa PCC 7806 is triggered by spent Daphnia medium and disrupted cells. Hydrobiologia 644(1), 159-168.
    Brient, L., Lengronne, M., Bertrand, E., Rolland, D., Sipel, A., Steinmann, D., Baudin, I., Legeas, M., Le Rouzic, B. and Bormans, M. (2008) A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring 10(2), 248-255.
    Brillas, E., Mur, E., Sauleda, R., Sànchez, L., Peral, J., Domènech, X. and Casado, J. (1998) Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental 16(1), 31-42.
    Brussaard, C.P.D., Marie, D., Thyrhaug, R. and Bratbak, G. (2001) Flow cytometric analysis of phytoplankton viability following viral infection, Aquatic Microbial Ecology 26, 157-166.
    Burch, M., Harvey, F.L., Baker, P. and Jones, G. (2003) National protocol for the monitoring of cyanobacteria and their toxins in surface fresh waters. DRAFT V6.0 for consideration LWBC.
    Carmichael, W.W. (1992) Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Microbiology 72(6), 445-459.
    Carmichael, W.W. (1994) Toxins of cyanobacteria. Scientific American 270(1), 78-86.
    Carmichael, W.W., Azevedo, S., An, J.S., Molica, R.J.R., Jochimsen, E.M., Lau, S., Rinehart, K.L., Shaw, G.R. and Eaglesham, G.K. (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives 109(7), 663-668.
    Carter, W.O., Narayanan, P.K. and Robinson, J.P. (1994) Intracellular hydrogen-peroxide and superoxide anion detection in endothelial-cells. Journal of Leukocyte Biology 55(2), 253-258.
    Cater, S.R., Stefan, M.I., Bolton, J.R. and Safarzadeh-Amiri, A. (2000) UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters. Environmental Science & Technology 34(4), 659-662.
    Cellamare, M., Rolland, A. and Jacquet, S. (2010) Flow cytometry sorting of freshwater phytoplankton. Journal of Applied Phycology 22(1), 87-100.
    Cepak, V. and Komarek, J. (2010) Cytomorphology of six halotolerant coccoid cyanobacteria using DAPI fluorescent and transmission electron microscopy, compared with molecular data. Fottea 10(2), 229-234.
    Chang, D.W., Hsieh, M.L., Chen, Y.M., Lin, T.F. and Chang, J.S. (2011) Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-cyclocitral. Journal of Hazardous Materials 185(2-3), 1214-1220.
    Chang, H., Chen, C. and Wang, G. (2011b) Identification of potential nitrogenous organic precursors for C-, N-DBPs and characterization of their DBPs formation. Water Research 45(12), 3753-3764.
    Chen, Y.M., Hobson, P., Burch, M.D. and Lin, T.F. (2010) In situ measurement of odor compound production by benthic cyanobacteria. Journal of Environmental Monitoring 12(3), 769-775.
    Cheng, X.W., Yu, X.J. and Xing, Z. (2012) Photoelectric properties of cystine-modified nano-TiO2 with visible-light response. Journal of Alloys and Compounds 523, 22-24.
    Chorus, I. and Bartram, J. (1999.) Toxic cyanobacteria in water : a guide to their public health consequences, monitoring, and management, E & FN Spon, London ; New York.
    Chow, C.W.K., Drikas, M., House, J., Burch, M.D. and Velzeboer, R.M.A. (1999) The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research 33(15), 3253–3262.
    Chuai, Y.H., Gao, F., Li, B.L., Zhao, L.Q., Qian, L.R., Cao, F., Wang, L., Sun, X.J., Cui, J.G. and Cai, J.M. (2012) Hydrogen-rich saline attenuates radiation-induced male germ cell loss in mice through reducing hydroxyl radicals. Biochemical Journal 442, 49-56.
    Codd, G., Lindsay, J., Young, F., Morrison, L. and Metcalf, J. (2005). Huisman, J., Matthijs, H. and Visser, P. (eds), pp. 1-23, Springer Netherlands.
    Cornish, B., Lawton, L.A. and Robertson, P.K.J. (2000) Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Applied Catalysis B-Environmental 25(1), 59-67.
    Dai, R., Liu, H., Qu, J., Ru, J. and Hou, Y. (2008) Cyanobacteria and their toxins in Guanting reservoir of Beijing, China, Journal of Hazardous Materials. 153, 470-477.
    Daly, R.I., Ho, L. and Brookes, J.D. (2007) Effect of chlorination on microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environmental Science & Technology 41(12), 4447-4453.
    Davis, T.W., Berry, D.L., Boyer, G.L. and Gobler, C.J. (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8(5), 715-725.
    Deusch, O., Landan, G., Roettger, M., Gruenheit, N., Kowallik, K.V., Allen, J.F., Martin, W. and Dagan, T. (2008) Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid Ancestor. Molecular Biology and Evolution 25(4), 748-761.
    Diner, B.A. (1979) Energy-transfer from the phycobilisomes to photosystem-II reaction centers in wild-type cyanidium-caldarium. Plant Physiology 63(1), 30-34.
    Ding, J., Shi, H.L., Timmons, T. and Adams, C. (2010) Release and removal of microcystins from Microcystis during oxidative-, physical-, and UV-based disinfection. Journal of Environmental Engineering-Asce 136(1), 2-11.
    Dittmann, E., Neilan, B.A., Erhard, M., vonDohren, H. and Borner, T. (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Molecular Microbiology 26(4), 779-787.
    Drabkova, M., Admiraal, W. and Marsalek, B. (2007a) Combined exposure to hydrogen peroxide and light - Selective effects on cyanobacteria, green algae, and diatoms. Environmental Science & Technology 41(1), 309-314.
    Drabkova, M., Matthijs, H.C.P., Admiraal, W. and Marsalek, B. (2007b) Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363-369.
    Elovitz, M.S. and von Gunten, U. (1999) Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Science & Engineering 21(3), 239-260.
    Emeline, A.V., Kuznetsov, V.N., Rybchuk, V.K. and Serpone, N. (2008) Visible-light-active titania photocatalysts: The case of N-doped TiO2s-properties and some fundamental issues. International Journal of Photoenergy.
    Gao, L. and Zhang, Q.H. (2001) Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles. Scripta Materialia 44(8-9), 1195-1198.
    Gao, S.S., Yang, J.X., Tian, J.Y., Ma, F., Tu, G. and Du, M.A. (2010) Electro-coagulation-flotation process for algae removal, Journal of Hazardous Materials 177, 336-343.
    Garcia-Fernandez, I., Polo-Lopez, M.I., Oller, I. and Fernandez-Ibanez, P. (2012) Bacteria and fungi inactivation using Fe3+/sunlight, H2O2/sunlight and near neutral photo-Fenton: A comparative study. Applied Catalysis B-Environmental 121, 20-29.
    Garcia-Villada, L., Rico, M., Altamirano, M., Sanchez-Martin, L., Lopez-Rodas, V. and Costas, E. (2004) Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Research 38(8), 2207-2213.
    Gilbert, J.J. (1996) Effect of food availability on the response of planktonic rotifers to a toxic strain of the cyanobacterium Anabaena flos-aquae. Limnology and Oceanography 41(7), 1565-1572.
    Glaze, W.H. (1990) Chemical oxidation, in water quality and treatment, Chapter 12, American Water Works Association, McGraw-Hill, New York.
    Granum, E., Kirkvold, S. and Myklestad, S.M. (2002) Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Marine Ecology-Progress Series 242, 83-94.
    Graham, D., Kisch, H., Lawton, L.A. and Robertson, P.K.J. (2010) The degradation of microcystin-LR using doped visible light absorbing photocatalysts. Chemosphere 78(9), 1182-1185.
    Gregor, J. and Marsalek, B. (2004) Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. 38(3), 517–522.
    Gregor, J., Marsalek, B. and Sipkova, H. (2007) Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Research 41(1), 228-234.
    Ha, J.H., Hidaka, T. and Tsuno, H. (2008) Quantification of toxic microcystis and evaluation of its dominance ratio in blooms using real-time PCR. Environmental Science & Technology 43(3), 812-818.
    Haider, S., Naithani, V., Viswanathan, P.N. and Kakkar, P. (2003) RETRACTED: Cyanobacterial toxins: a growing environmental concern. Chemosphere 52(1), 1-21.
    Haji, S., Benstaali, B. and Al-Bastaki, N. (2011) Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal 168(1), 134-139.
    Harada, K.I., Ozaki, K., Tsuzuki, S., Kato, H., Hasegawa, M., Kuroda, E.K., Arii, S. and Tsuji, K. (2009) Blue color formation of cyanobacteria with beta-cyclocitral, Journal of Chemical Ecology 35, 1295-1301.
    Harada, K.I., Tsuji, K., Watanabe, M.F. and Kondo, F. (1996) Stability of microcystins from cyanobacteria—III.* Effect of pH and temperature. Phycologia 35(6S), 83-88.
    Harada, K.I. and Tsuji, K. (1998) Persistence and decomposition of hepatotoxic microcystins produced by cyanobacteria in natural environment. Toxin Reviews 17(3), 385-403.
    Hartmann, N.B., Von der Kammer, F., Hofmann, T., Baalousha, M., Ottofuelling, S. and Baun, A. (2010) Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269(2-3), 190-197.
    He, Y.Y., Klisch, M. and Häder, D.P. (2002) Adaptation of cyanobacteria to UV-B stress correlated with oxidative stress and oxidative damage. Photochemistry and Photobiology 76(2), 188-196.
    Henley, D.E. (1972) The effects of geraniol and geosmin on the growth and developmental cycle of Anabaena circinalis, Journal of Phycology 8, 1972.
    Hitzfeld, B.C., Hoger, S.J. and Dietrich, D.R. (2000) Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives 108, 113-122.
    Hobson, P., Dickson, S., Tsymbal, L, House, J., Kao, S. C., Chang, D.W., Lin, T.F., Burch, M. (2011) Control of cyanobacteria in reservoirs, pp. 70-74.
    Hu, Q., Zhang, C., Wang, Z., Chen, Y., Mao, K., Zhang, X., Xiong, Y. and Zhu, M. (2008) Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2. Journal of Hazardous Materials 154(1–3), 795-803.
    Huot, Y. and Babin, M. (2010) Overview of fluorescence protocols: theory, basic concepts, and practice, developments, Applied Phycology 3, 31-74.
    Ikawa, M., Sasner, J.J. and Haney, J.F. (2001) Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth, Hydrobiologia 443, 19-22.
    Izydorczyk, K., Carpentier, C., Mrowczynski, J., Wagenvoort, A., Jurczak, T. and Tarczynska, M. (2009) Establishment of an alert level framework for cyanobacteria in drinking water resources by using the algae online analyser for monitoring cyanobacterial chlorophyll a. Water Research 43(4), 989-996.
    Izydorczyk, K., Tarczynska,M., Jurczak, T., Mrowczynski, J. and Zalewsk, M. (2005) Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water, Environmental Toxicology 20(4), 425-430.
    Jančula, D. and Maršálek, B. (2011) Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85(9), 1415-1422.
    Jensen, H., Soloviev, A., Li, Z.S. and Sogaard, E.G. (2005) XPS and FTIR investigation of the surface properties of different prepared titania nano-powders. Applied Surface Science 246(1-3), 239-249.
    Jo, C.H., Dietrich, A.M. and Tanko, J.M. (2011) Simultaneous degradation of disinfection byproducts and earthy-musty odorants by the UV/H2O2 advanced oxidation process. Water Research 45(8), 2507-2516.
    Joll, C.A., Alessandrino, M.J. and Heitz, A. (2010) Disinfection by-products from halogenation of aqueous solutions of terpenoids, Water Research 44, 232-242.
    Jones, G. and Burch, M. (1997) Algaecide and algistat use in Australia, Water Resources, Canberra.
    Jones, G.J. and Korth, W. (1995) In-situ production of volatile odor compounds by river and reservoir phytoplankton population in Asutralia. Water Science and Technology 31(11), 145-151.
    Juttner, F. and Hoflacher, B. (1985) Evidence of beta-carotene 7,8 (7',8') oxygenase (beta-cyclocitral, crocetindial generating) in Microcystis, Archives of Microbiology. 141, 337-343.
    Kathiravan, A., Chandramohan, M., Renganathan, R. and Sekar, S. (2009) Cyanobacterial chlorophyll as a sensitizer for colloidal TiO2. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 71(5), 1783-1787.
    Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D. and Stal, L. (2002) Dinitrogen fixation in the world's oceans. Biogeochemistry 57-58(1), 47-98.
    Kay, S.H., Quimby, P.C.J. and Ouzts, J.D. (1982) Hydrogen peroxide a potential algicide for aquaculture. Proceedings Southern Weed Science Society 35, 275.
    Kedziora, A., Strek, W., Kepinski, L., Bugla-Ploskonska, G. and Doroszkiewicz, W. (2012) Synthesis and antibacterial activity of novel titanium dioxide doped with silver. Journal of Sol-Gel Science and Technology 62(1), 79-86.
    Kim, S.C. and Lee, D.K. (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchemical Journal 80(2), 227-232.
    Kostyuk, S.V., Ermakov, A.V., Alekseeva, A.Y., Smirnova, T.D., Glebova, K.V., Efremova, L.V., Baranova, A. and Veiko, N.N. (2012) Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 729(1-2), 52-60.
    Kull, T.P.J., Backlund, P.H., Karlsson, K.M. and Meriluoto, J.A.O. (2004) Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide:  reaction kinetics, characterization, and toxicity of reaction products. Environmental Science & Technology 38(22), 6025-6031.
    Kull, T.P.J., Sjovall, O.T., Tammenkoski, M.K., Backlund, P.H. and Meriluoto, J.A.O. (2006) Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: Influence of natural organic matter. Environmental Science & Technology 40(5), 1504-1510.
    Kuuppoleinikki, P. and Kuosa, H. (1989) Preservation of picoplanktonic cyanobacteria and heterotrophic nanoflagellates for epifluorescence microscopy. Archiv fur Hydrobiologie 114(4), 631-636.
    Lahti, K., Rapala, J., Färdig, M., Niemelä, M. and Sivonen, K. (1997) Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water. Water Research 31(5), 1005-1012.
    Lalezary, S., Pirbazari, M. and McGuire, M.J. (1986) Oxidation of 5 earthy musty taste and odor compounds. Journal American Water Works Association 78(3), 62-69.
    Lam, S.W., Chiang, K., Lim, T.M., Amal, R. and Low, G.K.C. (2005) Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol. Applied Catalysis B-Environmental 55(2), 123-132.
    Lanao, M., Ormad, M.P., Mosteo, R. and Ovelleiro, J.L. (2012) Inactivation of enterococcus sp by photolysis and TiO2 photocatalysis with H2O2 in natural water. Solar Energy 86(1), 619-625.
    Lawrenz, E. and Richardson, T.L. (2011) How does the species used for calibration affect chlorophyll a measurements by in situ fluorometry? Estuaries and Coasts 34(4), 872–883.
    Lee, D., Lim, B.S., Lee, Y.K. and Yang, H.C. (2006) Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biology and Toxicology 22(1), 39-46.
    Lee, T., Tsuzuki, M., Takeuchi, T., Yokoyama, K. and Karube, I. (1994) In-vivo fluorometric method for early detection of cyanobacterial waterblooms. Journal of Applied Phycology 6(5-6), 489-495.
    Li, L., Sengpiel, R.E., Pascual, D.L., Tedesco, L.P., Wilson, J.S. and Soyeux, E. (2010) Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir. International Journal of Remote Sensing 31(15), 4147-4162.
    Li, Z.L., Yu, J.W., Yang, M., Zhang, J., Burch, M.D. and Han, W. (2010) Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9(5), 481-488.
    Liang, W., Chen, L., Sui, L., Yu, J., Wang, L. and Shi, H. (2011) Assessment of detoxification of microcystin extracts using electrochemical oxidation. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 46(10), 1102-1112.
    Liao, X.S., Wang, X., Zhao, K.H. and Zhou, M. (2007) Study on the influence of cyanobacterial growth by UV-C photocatalytic oxidation with nanometric TiO2. Wuhan Zhiwuxue Yanjiu 25(5), 457-461.
    Lin, T.F., Chang, D.W., Lien, S.K., Tseng, Y.S., Chiu, Y.T. and Wang, Y.S. (2009) Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. Journal of Water Supply Research and Technology-Aqua 58(8), 539-551.
    Lin, T.F., Liu, C.L., Yang, F.C. and Hung, H.W. (2003) Effect of residual chlorine on the analysis of geosmin, 2-MIB and MTBE in drinking water using the SPME technique. Water Research 37(1), 21-26.
    Lin, T.F., Watson, S., Devesa, R., Bruchet, A., Burlingame, G., Dietrich, A. and Suffet, M. (2012) Off-flavours in the aquatic environment: A global issue, In Global Trends & Challenges in Water Science, Research and Management-A compendium of hot topics and features from IWA Specialist Groups, Ed. Li, H., International Water Association, 58-63, London, UK. ISBN 9781780401065.
    Lin, T.F., Wong, J.Y. and Kao, H.P. (2002) Correlation of musty odor and 2-MIB in two drinking water treatment plants in south Taiwan. Science of the Total Environment 289(1-3), 225-235.
    Liu, C., Tang, X., Mo, C. and Qiang, Z. (2008) Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium. Journal of Solid State Chemistry 181(4), 913-919.
    Liu, S.X., Qu, Z.P., Han, X.W. and Sun, C.L. (2004) A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today 93-5, 877-884.
    Lucky, R.A. and Charpentier, P.A. (2010) N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and photocatalytic activity. Applied Catalysis B: Environmental 96(3–4), 516-523.
    Lorenzen, C.J. (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Research 13(2), 223–227.
    Ma, M., Liu, R.P., Liu, H.J. and Qu, J.H. (2012) Chlorination of microcystis aeruginosa suspension: Cell lysis, toxin release and degradation. Journal of Hazardous Materials 217, 279-285.
    Magaletti, E., Urbani, R., Sist, P., Ferrari, C.R. and Cicero, A.M. (2004) Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. European Journal of Phycology 39(2), 133-142.
    Matthijs, H.C.P., Visser, P.M., Reeze, B., Meeuse, J., Slot, P.C., Wijn, G., Talens, R. and Huisman, J. (2012) Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research 46(5), 1460-1472.
    Martins, A. and Vasconcelos, V. (2011) Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics. Archives of Microbiology 193(9), 615-627.
    McQuaid, N., Zamyadi, A., Prevost, M., Bird, D.F. and Dorner, S. (2011) Use of in vivo phycocyanin fluorescence to monitor potential microcystin producing cyanobacterial biovolume in a drinking water source, Journal of Environmental Monitoring, 13, 455–463.
    Misson, B., Sabart, M., Amblard, C. and Latour, D. (2011) Involvement of microcystins and colony size in the benthic recruitment of the cyanobacterium microcystis (cyanophyceae). Journal of Phycology 47(1), 42-51.
    Mizuno, T., Ohara, S., Nishimura, F. and Tsuno, H. (2011) O3/H2O2 Process for Both Removal of Odorous Algal-Derived Compounds and Control of Bromate Ion Formation. Ozone-Science & Engineering 33(2), 121-135.
    Nanayakkara, N.P.D. and Schrader, K.K. (2011) Evaluation of free radical-generating compounds for toxicity towards the cyanobacterium Planktothrix perornata, which causes musty off-flavour in pond-raised channel catfish (Ictalurus punctatus). Aquaculture Research 42(12), 1895-1898.
    Nalewajko, C. and Murphy, T.P. (2001) Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology 2(1), 45-48.
    Newcombe, G., House, J., Ho, L., Baker, P. and Burch, M.D. (2010) Management strategies for cyanobacteria (Blue-Green Algae): A guide for water utilities, research report No 74, Water Quality Research Australia, Adelaide, South Australia.
    Nicholson, B.C., Shaw, G.R., Morrall, J., Senogles, P.J., Woods, T.A., Papageorgiou, J., Kapralos, C., Wickramasinghe, W., Davis, B.C., Eaglesham, G.K. and Moore, M.R. (2003) Chlorination for degrading saxitoxins (paralytic shellfish poisons) in water. Environmental Technology 24(11), 1341-1348.
    Norris, L., Norris, R.E. and Calvin, M. (1955) A survey of the rates and products of short-term photosynthesis in plants of nine phyla, Oxford University Press.
    Onstad, G.D., Strauch, S., Meriluoto, J., Codd, G.A. and von Gunten, U. (2007) Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environmental Science & Technology 41(12), 4397-4404.
    Ozaki, K., Ito, E., Tanabe, S., Natsume, K., Tsuji, K. and Harada, K. (2009) Electron microscopic study on lysis of a cyanobacterium Microcystis, Journal of Health Science 55, 578-585.
    Ozaki, K., Ohta, A., Iwata, C., Horikawa, A., Tsuji, K., Ito, E., Ikai, Y. and Harada, K.I. (2008) Lysis of cyanobacteria with volatile organic compounds, Chemosphere 71, 1531-1538.
    Pelaez, M., de la Cruz, A.A., O'Shea, K., Falaras, P. and Dionysiou, D.D. (2011) Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. Water Research 45(12), 3787-3796.
    Peller, J.R., Whitman, R.L., Griffith, S., Harris, P., Peller, C. and Scalzitti, J. (2007) TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Journal of Photochemistry and Photobiology a-Chemistry 186(2-3), 212-217.
    Perez, M., Torrades, F., Garca-Hortal, J.A., Domenech, X. and Peral, J. (2002) Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental 36(1), 63-74.
    Petasne, R.G. and Zika, R.G. (1997) Hydrogen peroxide lifetimes in south Florida coastal and offshore waters. Marine Chemistry 56(3-4), 215-225.
    Peter, A. and Von Gunten, U. (2007) Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water. Environmental Science & Technology 41(2), 626-631.
    Phattarapattamawong, S., Echigo, S. and Itoh, S. (2011) Simultaneous control of bromate ion and chlorinous odor in drinking water using an advanced oxidation process (O3/H2O2). Ozone-Science & Engineering 33(2), 136-142.
    Plummer, J.D. and Edzwald, J.K. (2001) Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production, Environmental Science & Technology 35, 3661-3668.
    Plummer, J.D. and Edzwald, J.K. (2002) Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation, Jounal of Water Supply Research Technoogy - AQUA 51, 307-318.
    Ramirez, A.M. and De Belie, N. (2009) Evaluation of the algaecide activity of titanium dioxide on autoclaved aerated concrete. Journal of Advanced Oxidation Technologies 12(1), 100-104.
    Ramseier, M.K., Peter, A., Traber, J. and von Gunten, U. (2011) Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate. Water Research 45(5), 2002-2010.
    Rastogi, R.P., Singh, S.P., Häder, D.P. and Sinha, R.P. (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2”,7”-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research Communications 397(3), 603-607.
    Regel, R.H., Ferris, J.M., Ganf, G.G. and Brookes, J.D. (2002) Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquatic Toxicology 59(3-4), 209-223.
    Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111(MAR), 1-61.
    Robertson, R.F., Jauncey, K., Beveridge, M.C.M. and Lawton, L.A. (2005) Depuration rates and the sensory threshold concentration of geosmin responsible for earthy-musty taint in rainbow trout, Onchorhynchus mykiss. Aquaculture 245(1-4), 89-99.
    Rodgers, J.H., Johnson, B.M. and Bishop, W.M. (2010) Comparison of three algaecides for controlling the density of Prymnesium parvum, Journal of American Water Resource Association 46, 153-160.
    Rositano, J., Newcombe, G., Nicholson, B. and Sztajnbok, P. (2001) Ozonation of nom and algal toxins in four treated waters. Water Research 35(1), 23-32.
    Rodríguez, E., Onstad, G.D., Kull, T.P.J., Metcalf, J.S., Acero, J.L. and von Gunten, U. (2007a) Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research 41(15), 3381-3393.
    Rodríguez, E., Majado, M.E., Meriluoto, J. and Acero, J.L. (2007b) Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment. Water Research 41(1), 102-110.
    Rositano, J., Nicholson, B.C. and Pieronne, P. (1998) Destruction of cyanobacterial toxins by ozone. Ozone: Science & Engineering 20(3), 223-238.
    Safonova, T.A., Annenkov, V.V., Chebykin, E.P., Danilovtseva, E.N., Likhoshway, Y.V. and Grachev, M.A. (2007) Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of Germanic acid, Biochemistry - Moscow 72, 1261-1269.
    Sathish, M., Viswanathan, B. and Viswanath, R.P. (2007) Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex. Applied Catalysis B-Environmental 74(3-4), 307-312.
    Schmidt, K. and Beckmann, D. (1998) Biomass monitoring using the photoacoustic effect. Sensors and Actuators B-Chemical 51(1-3), 261-267.
    Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002) Laser-Raman imagery of Earth's earliest fossils. Nature 416(6876), 73-76.
    Schwarzenbach, R.P., Gschwend, P.M. and Imboden, D.M. (1993) Environmental organic chemistry, Wiley-Interscience, New York.
    Senogles, P., Shaw, G., Smith, M., Norris, R., Chiswell, R., Mueller, J., Sadler, R. and Eaglesham, G. (2000) Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38(9), 1203-1213.
    Seppälä, J., Ylöstalo, P., Kaitala, S., Hällfors, S., Raateoja, M. and Maunula, P. (2007) Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science 73(3-4), 489-500.
    Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. Journal of Physics D-Applied Physics 39(11), 2361-2366.
    Sherwood, K.T., Pigford, R.L. and Wilke, C.R. (1975) Mass transfer, McGraw-Hill, New York.
    Sivonen, K. and Jones, G. (1999) Chapter 3: Cyanobacterial Toxins, in Toxic Cyanobacteria in Water, ed. I. Chorus & J. Bartram, E & FN Spon, 55–124, London, UK.
    Sloth, J.K., Wiebe, M.G. and Eriksen, N.T. (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology 38(1-2), 168-175.
    Srinivasan, R. and Sorial, G.A. (2011) Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review. Journal of Environmental Sciences 23(1), 1-13.
    Staats, N., Stal, L.J. and Mur, L.R. (2000) Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: Effects of nutrient conditions. Journal of Experimental Marine Biology and Ecology 249(1), 13-27.
    Stadnichuk, I.N., Rakhimberdieva, M.G., Boichenko, V.A., Karapetyan, N.V., Selyakh, I.O. and Bolychevtseva, Y.V. (2000) Glucose-induced inhibition of the photosynthetic pigment apparatus in heterotrophically-grown Galdieria partita. Russian Journal of Plant Physiology 47(5), 585-592.
    Stewart, I., Carmichael, W.W., Sadler, R., McGregor, G.B., Reardon, K., Eaglesham, G.K., Wickramasinghe, W.A., Seawright, A.A. and Shaw, G.R. (2009) Occupational and environmental hazard assessments for the isolation, purification and toxicity testing of cyanobacterial toxins. Environmental Health 8.
    Suffet, I.H., Khiari, D. and Bruchet, A. (1999) The drinking water taste and odor wheel for the millennium: Beyond geosmin and 2-methylisoborneol. Water Science and Technology 40(6), 1-13.
    Sunil, K. and Narayana, B. (2008) Spectrophotometric determination of hydrogen peroxide in water and cream samples. Bulletin of Environmental Contamination and Toxicology 81(4), 422-426.
    Smith, V.H., Tilman, G.D. and Nekola, J.C. (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental pollution (Barking, Essex : 1987) 100(1-3), 179-196.
    Stal, L.J. (2007). Seckbach, J. (ed), pp. 659-680, Springer Netherlands.
    Svrcek, C. and Smith, D.W. (2004) Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering and Science 3(3), 155-185.
    Taylor, J.A. (1995) A review of: “Detection Methods for Cyanobacterial Toxins”. Chemistry and Ecology 11(4), 275-276.
    Thompson, T.L. and Yates, J.T., Jr. (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chemical Reviews 106(10), 4428-4453.
    Torrens, A., Molle, P., Boutin, C. and Salgot, M. (2009) Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent, Water Research 43, 1851-1858.
    Troxler, R.F. and Bogorad, L. (1966) Studies on formation of phycocyanin porphyrins and a blue phycobilin by wild-type and mutant strains of cyanidium caldarium. Plant Physiology 41(3), 491.
    Tung, S.C., Lin, T.F., Yang, F.C. and Liu, C.L. (2008) Seasonal change and correlation with environmental parameters for 2-MIB in Feng-Shen Reservoir, Taiwan, Environmental Monitoring and Assessment 145, 407-416.
    Twiss, M. and MacLeod, I. (2008) Phytoplankton community assessment in eight Lake Ontario tributaries made using fluorimetric methods. Aquatic Ecosystem Health & Management 11(4), 422-431.
    Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L. and Sivonen, K. (2003) Quantitative real-time PCR for determination of microcystin synthetase e copy numbers for microcystis and anabaena in lakes. Appl Environ Microbiol 69(12), 7289-7297.
    Velzeboer, R., Drikas, M., Donati, C., Burch, M. and Steffensen, D. (1995) Release of geosmin by Anabaena circinalis following treatment with aluminum sulfate, Water Science and Technology 31, 187-194.
    Vileno, B., Lekka, M., Sienkiewicz, A., Jeney, S., Stoessel, G., Lekki, J., Forro, L. and Stachura, Z. (2007) Stiffness alterations of single cells induced by UV in the presence of NanoTiO2. Environmental Science & Technology 41(14), 5149-5153.
    Vilhunen, S., Puton, J., Virkutyte, J. and Sillanpaa, M. (2011) Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. Environmental Technology 32(8), 865-872.
    Wang, G.S., Hsieh, S.T. and Hong, C.S. (2000) Destruction of humic acid in water by UV light - Catalyzed oxidation with hydrogen peroxide. Water Research 34(15), 3882-3887.
    Wang, Z.C., Li, D.H., Qin, H.J. and Li, Y.X. (2012) An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes. Environmental Pollution 160, 34-41.
    Wanninkhof, R., Ledwell, J. and Crusius, J. (1991) Gas transfer velocities on lakes measured with sulfur hexafluoride, in Air - water mass transfer, American Society of Civil Engineering, New York.
    Watson, S.B. (2003) Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42(4), 332–350.
    Westrick, J., Szlag, D., Southwell, B. and Sinclair, J. (2010) A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and Bioanalytical Chemistry 397(5), 1705-1714.
    Westerhoff, P., Nalinakumari, B. and Pei, P. (2006) Kinetics of MIB and geosmin oxidation during ozonation. Ozone: Science & Engineering 28(5), 277-286.
    Whelton, A.J. (2001) Temperature effects on drinking water odor perception, Virginia Polytechnic Institute and State University, Blacksburg.
    Xiao, X., Han, Z.Y., Chen, Y.X., Liang, X.Q., Li, H. and Qian, Y.C. (2011) Optimization of FDA–PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis aeruginosa. Physics and Chemistry of the Earth, Parts A/B/C 36(9-11), 424-429.
    Yacobi, Y., Pollihger, U., Gonen, Y., Gerhardt, V. and Sukenik, A. (1996) HPLC analysis of phytoplankton pigments from Lake Kinneret with special reference to the bloom-forming dinoflagellate Peridinium gatunense (Dinophyceae) and chlorophyll degradation products. Journal of Plankton Research 18(10), 1781-1796.
    Yang, M., Yu, J.W., Li, Z.L., Guo, Z.L., Burch, M. and Lin, T.F. (2008) Taihu lake not to blame for Wuxi’s woes, Science 319, 158.
    Yen, H.K., Lin, T.F. and Tseng, I.C. (2012) Characterization and quantification of major toxigenic Microcystis genotypes in Moo-Tan Reservoir and associated water treatment plant. Journal of Environmental Monitoring 14(2), 687-696.
    Yen, H.K., Lin, T.F. and Liao, P.C. (2011) Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography - mass spectrometry. Toxicon 58(2), 209–218.
    Yeung, K.L., Leung, W.K., Yao, N. and Cao, S.L. (2009) Reactivity and antimicrobial properties of nanostructured titanium dioxide. Catalysis Today 143(3-4), 218-224.
    YSI (2011) 6-series multiparameter water quality sondes user manual, Revision H, YSI In., Yellow Springs, Ohio, USA.
    Zamyadi, A. (2011) The value of in vivo monitoring and chlorination for the control of toxic cyanobacteria in drinking water production., PhD thesis, Ecole Polytechnique de Montreal, University of Montreal, Montreal, Canada.
    Zamyadi, A., Ho, L., Newcombe, G., Bustamante, H. and Prevost, M. (2012) Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination. Water Research 46(5), 1524-1535.
    Zamyadi, A., Ho, L., Newcombe, G., Daly, R.I., Burch, M., Baker, P. and Prevost, M. (2010) Release and oxidation of cell-bound saxitoxins during chlorination of Anabaena circinalis cells. Environmental Science & Technology 44(23), 9055-9061.
    Zamyadi, A., McQuaid, N., Prevost M. and Dorner, S. (2012) Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. Journal of Environmental Monitoring 14(2), 579-588.
    Zamyadi, A., Prevost, M., Dorner, S., McQuaid, N., Newcome, G., Burch, M., Baker, P., Daly, R. and Morsisch, T. (2009) Validation of on-line fluoroprobe for the detection of cyanobacteria in source water, AWWA Water Quality Technology Conference, Nov. 15-18, Seattle, WA, USA.
    Zananski, T.J., Twiss, M.R. and Mihuc, T.B. (2010) Use of fluorimetry to evaluate atrazine toxicity to phytoplankton communities. Aquatic Ecosystem Health & Management 13(1), 56-65.
    Zhang, K.J., Gao, N.Y., Yen, H.K., Chiu, Y.T. and Lin, T.F. (2011) Degradation and formation of wood odorant beta-cyclocitral during permanganate oxidation. Journal of Hazardous Materials 194, 362-368.
    Zhao, L.A., Li, X., Liang, S.A., Yang, Y.L. and Ieee (2009) Effect on Microcystis aeruginosa inactivation by manganese copper composited algaecide.
    Ziegmann, M., Abert, M., Muller, M. and Frimmel, F.H. (2010) Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa. Water Research 44(1), 195-204.
    Zimmerman, W.J., Soliman, C.M. and Rosen, B.H. (1995) Growth And 2-Methylisoborneol Production by the Cyanobacterium Phormidium LM689. Water Science and Technology 31(11), 181-186.
    Zurawell, R., Chen, H., Burke, J. and Prepas, E. (2005) Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health Part B: Critical Reviews 8(1), 1-37.

    下載圖示 校內:2018-01-07公開
    校外:2018-01-07公開
    QR CODE