| 研究生: |
呂嘉揚 Lu, Chia-Yang |
|---|---|
| 論文名稱: |
探討聚左乳酸在熔融態中之結晶成長機制及其對層晶堆疊的影響 The Phase Behavior of Poly(L-lactic acid) in the Bulk and Its Influence to the Evolution of Lamellar Stacking |
| 指導教授: |
阮至正
Ruan, Jrjeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 板晶堆疊結構 、非結晶區重複的膨脹收縮 、介穩相 、相轉變 、板晶重整 、局部熔融與再結晶 |
| 外文關鍵詞: | lamellar stacking, reversible change of stacking period, the growth of mesophase, rough interface with amorphous region, transition to alpha phase, reorganization, partial melting and recrystallization |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這個研究藉由在不同溫度獲得之小角 ( in-situ Small Angle X-Ray Scattering,SAXS ) 及廣角X-Ray繞射 ( in-situ Wide Angle X-Ray diffraction,WAXD ),來瞭解聚左乳酸 ( poly(L-lactide) ) 板晶堆疊結構在相變化影響下的演變。
聚左乳酸分子於160oC以上的溫度,雖然不容易觀察到結晶的成長,卻能夠大幅度的進行板晶的重新排列與增厚 (lamellar reorganization,secondary crystallization)。於高溫所形成的規則板晶堆疊 ( lamellar stacking ),在於室溫與170oC ( 略低於熔融溫度 ) 之間的升降溫循環,板晶厚度雖然沒有改變,小角X-Ray繞射強度卻隨溫度增加或減弱,並發生非結晶區重複的 ( reversible ) 膨脹收縮,與對應的板晶堆疊週期 ( long period ) 的改變。
等溫即時的WAXD指出,在結晶來不及發生的降溫過程,分子鏈平均間距的變化與溫度有一線性關係,然而在低於120oC時出現不連續的斜率變化。此實驗結果指出,在板晶堆疊的非結晶區,可於120oC時形成一介穩相 ( mesophase ),改變堆疊週期,並增加非結晶區的電子密度。因此不僅影響了板晶堆疊間距隨溫度的變化,更造成板晶堆疊的電子密度對比減小,使得在低溫下的小角X-Ray繞射強度減弱。此外,於室溫下觀察到的板晶堆疊間距 ( long period ),並不因降溫速率不同而改變。因此推論,可以快速形成的介穩相,使得分子鏈在120oC下有一穩定的平均間距及板晶堆疊週期。
在較低溫度進行結晶成長,’晶相的快速成長,會形成穩定的不規則板晶堆疊。在升溫達約155oC後,發生轉變為晶相的相轉變,方觀察到堆疊有序性及週期的增加。因此可推論,不一致的板晶界面 ( rough basal planes ),將導致於界面附近的分子鏈段無法活動 ( rigid amorphous ),限制板晶進一步的有序排列與增厚,與非晶區的受熱膨脹。在155oC發生’相至相的轉變,使得板晶重整 ( lamellar reorganization ) 可以發生,而減少不能移動的分子鏈段,讓板晶與非晶區可以隨著溫度升高而逐步增加厚度。在低於160oC發生的’至晶相的轉變,以類似固固相轉變機制進行,發生堆疊週期與有序性的連續變化。
若因快速升溫使得’至晶相的轉變發生在170oC,則有局部熔融與再結晶 ( partial melting and recrystallization ) 的發生。初期板晶堆疊結構崩毀後,觀察到再結晶的快速進行,大規模的在材料內部形成更有序的板晶堆疊。
For the PLLA lamellar stacking developed in the bulk, the influence coming from the first-order phase transition from the amorphous melt to mesophase, and from the solid-solid transition of alpha’ crystalline lamellae to the regular staking of alpha crystalline lamellae, have been studied in this research by in-situ small- and wide-angle X-ray scattering (SAXS and WAXS). The average separation among molecules in the amorphous melt was found to linearly decrease with temperature. The slope of this linear relationship discontinuously changed at 110oC, signifying the growth of mesophase. With the growth of mesophase in the lamellar stacking at lower temperature, the thermal expansion of amorphous region during heating was suppressed until the melting of mesophase occurring at 120oC. During applied heating and cooling circle to lamellar stacking well established at 170oC, the reversible growth of mesophase at lower temperature was identified, accompanied with reduced contrast of electron density within lamellar stacking, and reversible change of stacking period.
Upon the growth of alpha’ crystalline lamellae at 75oC, the thermal expansion of lamellar stacking was significantly suppressed until the solid-solid transition to alpha phase took place around 150oC. It was conceived that the rapid growth of alpha’ crystalline lamellae creates rough interface with amorphous region, which results in a larger fraction of rigid amorphous and restricts the evolution of lamellar stacking during heating. Indicating by a fast volume expansion of amorphous region starting after the transition to alpha phase, the lamellar reorganization driven by the solid-solid transition is considered capable of resulting in more regular lamellar stacking, but not thicker lamellae, and greatly lessening the fraction of rigid amorphous. As being further heated to 170oC, the newly developed alpha crystalline lamellae were partially melted, which temporarily destructed the regular stacking. The recrystallization process was found able to quickly follow the occurrence of partial melting, and result in lamellar thickening and regular stacking pattern within 15 minutes at 170oC, whereas the efficiency of crystallization from amorphous melt is basically negligible at this temperature. Therefore, the evolution of lamellar stacking during the partial melting and recrystallization process is identified in this research.
參考文獻
1. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, (25), 8909-8919.
2. Bassett, D. C., On the role of the hexagonal phase in the crystallization of polyethylene. In Interphases and Mesophases in Polymer Crystallization I, Springer-Verlag Berlin: Berlin, 2005; Vol. 180, pp 1-16.
3. Wunderlich, B., In Macromolecular Physics: Crystal Structure, Morphology, Defects, 1973; Vol. 1, p ChIII.
4. Wunderlich, B., Ch V &VI. In Macromolecular Physics:Crystal Nucleation, Growth, Annealing, 1976; Vol. 2.
5. Hikosaka, M.; Watanabe, K.; Okada, K.; Yamazaki, S., Topological mechanism of polymer nucleation and growth - The role of chain sliding diffusion and entanglement. In Interphases and Mesophases in Polymer Crystallization Iii, 2005; Vol. 191, pp 137-186.
6. Fischer, E. W., and Schmidt, G. F. Angewandte Chemie 1962, (74), 551.
7. Kasuga, T.; Ota, Y.; Nogami, M.; Abe, Y. Biomaterials 2001, 22, (1), 19-23.
8. Teramoto, N.; Urata, K.; Ozawa, K.; Shibata, M. Polymer Degradation and Stability 2004, 86, (3), 401-409.
9. Santis, P. D.; Kovacs, A. Journal of Biopolymer 1968, 6, 299.
10. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, S. H.; Ikada, Y. Journal of Macromolecular Science-Physics 1991, B30, (1-2), 119-140.
11. Krikorian, V.; Pochan, D. J. Chemistry of Materials 2003, 15, (22), 4317-4324.
12. Mulligan, J.; Cakmak, M. Macromolecules 2005, 38, (6), 2333-2344.
13. Yuryev, Y.; Wood-Adams, P.; Heuzey, M. C.; Dubois, C.; Brisson, J. Polymer 2008, 49, (9), 2306-2320.
14. Sanchez, M. S.; Mathot, V. B. F.; Poel, G. V.; Ribelles, J. L. G. Macromolecules 2007, 40, (22), 7989-7997.
15. Zhang, J. M.; Tashiro, K.; Domb, A. J.; Tsuji, H. T. Macromolecular Symposia 2006, 242, 274-278.
16. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Macromolecules 2007, 40, (26), 9463-9469.
17. Cho, T. Y.; Strobl, G. Polymer 2006, 47, (4), 1036-1043.
18. Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, (19), 8012-8021.
19. Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Macromolecules 2010, 43, (3), 1488-1498.
20. Murthy, N. S.; Correale, S. T.; Minor, H. Macromolecules 1991, 24, (5), 1185-1189.
21. Pluta, M.; Galeski, A. Biomacromolecules 2007, 8, (6), 1836-1843.
22. Zhang, J. M.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. Macromolecules 2010, 43, (9), 4240-4246.
23. Heck B, H. T., Iijima M, Sadiku E, Strobl G. New Journal of Physics 1999, 1, 17.
24. Fu, Q.; Heck, B.; Strobl, G.; Thomann, Y. Macromolecules 2001, 34, (8), 2502-2511.
25. Al-Hussein, M.; Strobl, G. Macromolecules 2002, 35, (22), 8515-8520.
26. Stock, B. D. C. a. S. R., Small Angle Scattering. In Elements of X-Ray Diffraction
Third Edition ed.; Prentice Hall: 2001.
27. Schneider, G. R. S. a. M. Journal of Polymer Science ; Part B: Polymer Physics 1980, 18, 1343-1359.
28. Verma, B. S. H. a. R. K. Journal of Synchrotron Radiation 1998, 5, (1), 23-29.
29. Ruland, W. J. Journal of Applied Physics 1971, 4, 70.
30. Wei-Tsung Chuang , U.-S. J., Po-Da Hong , Hwo-Shuenn Sheu , Ying-Huang Lai , Kan-Shan Shih. Polymer 2007, 48, 2919-2927.
31. G. Reiter , G. R. S., Progress in Understanding of Polymer Crystallization. In Progress in Understanding of Polymer Crystallization, Springer: 2007; pp 405, 406.
32. Ruan, J. J.; Huang, H. Y.; Huang, Y. F.; Lin, C.; Thierry, A.; Lotz, B.; Su, A. C. Macromolecules 2010, 43, (5), 2382-2388.
33. B. Wunderlich, D. M. B., and M. h. Kaplan. Journal of Applied Physics 1964, 35, 95.
校內:2015-07-28公開