簡易檢索 / 詳目顯示

研究生: 巫嘉豪
Wu, Chia-Hao
論文名稱: 電漿輔助鑽石成核於經硫酸鹽及磷酸鹽類水溶液化學處理之矽與二氧化矽基板
Plasma assisted diamond nucleation on silicon and silicon dioxide chemically treated by water solutions of sulfate and phosphate compounds
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 169
中文關鍵詞: 鑽石成核過硫酸銨微波電漿化學氣象沉積
外文關鍵詞: diamond nucleation, ammonium persulfate, MPCVD
相關次數: 點閱:109下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑽石成核於經化學溶液前處理之矽與二氧化矽基板,藉由微波電漿化學氣相沉積系統,在未外加任何偏壓下及未有任何經奈米鑽石顆粒的前處理,可得到成核密度大於一千倍對照於未經過化學前處理之基板。
    基板經由硫酸鹽類及磷酸鹽類水溶液前處理,像是過硫酸銨、硫酸銅和磷酸銨。兩種前處裡方法,分別使用超音波震洗法與加熱致乾過硫酸銨法於微波電漿化學氣象沉積系統中使用Ar-rich/H2/CH4氣體混和參數在工作壓力90-200Torr與基板溫度700-900°C,也可成功實行於Ar-rich/N2/CH4、 CO2/CH4以及H2-rich/CH4等微波電漿化學氣相沉積參數下。
    電子顯微鏡下顯示了經由加熱致乾過硫酸銨前處理可達到鑽石成核密度高達~10^9-10^10cm-2,然而卻會因咖啡環漬效應(coffee ring effect)影響於前處理後殘留在基板表面導致後續鑽石成核密度呈現環狀分布或疏密相間等不均勻現象發生。
    532nm綠光源的拉曼散射顯示鑽石薄膜之鑽石特徵峰在1334cm-1左右,伴隨著鑽石缺陷與非鑽石相之D-band跟G-band以及在鑽石薄膜晶界中trans-poly-acetylene導致~1140 cm-1與~1480 cm-1峰值。
    化學處理導致鑽石成核密度提升之機制目前仍未明朗,可能因素為基板表面因化學蝕刻導致粗糙度增加、化學藥品附著殘留或是形成鍵結於基板表面抑或是化學溶液中雜質如碳或金屬類所導致。化學處理鑽石成核法擁有簡單實行與價格便宜的優點,且不需額外的使用奈米鑽石顆粒等前處理與外加偏壓於微波電漿化學氣象沉積系統中即可達到高鑽石成核密度。

    Diamond nucleation by microwave plasma chemical vapor deposition on chemically treated silicon and silicon dioxide substrates without pre-seeding by diamond nano-particles increases in density by more than three orders of magnitude from that without chemical treatments. Substrates treated by water solutions of sulfate and phosphate compounds, such as ammonium persulfate, copper sulfate, and ammonium phosphate, are subjected to microwave plasma chemical vapor deposition in Ar-rich/H2/CH4 gas mixtures at 90-200Torr gas pressure and 700-900°C substrate temperature. Scanning electron microscopy demonstrates that diamond nuclei are formed on ammonium persulfate treated silicon and silicon dioxide at densities of ~10^9-10^10cm-2. 532nm Raman scattering of the nanocrystalline and microcrystalline diamond diamond films exhibits the diamond peak around 1334cm-1, and the characteristic Raman peaks attributable to atomic hydrogen in trans-poly-acetylene within grain boundaries. This new method of diamond nucleation avoids the needs for pre-seeding of diamond nanoparticles or diamond debris and externally applied bias voltage.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XIII 第一章 緒論 1 1.1 奈米碳材料 1 1.2 鑽石簡介 2 1.3 鑽石的性質 4 1.4 鑽石的應用 7 1.5 研究動機 10 第二章 CVD鑽石文獻回顧 11 2.1 前言 11 2.2 鑽石結構與CVD鑽石 13 2.3 微波電漿化學氣相沉積系統 18 2.4 熱燈絲與直流電漿CVD系統 20 第三章 鑽石成核與鑽石成長 24 3.1 前言 24 3.2 鑽石成核法 25 3.3 機械式拋磨(Mechanical abrasion/scratching) 26 3.4 超音波顆粒震洗(Ultrasonic particle treatment) 27 3.5 機械式拋磨之成核機制 30 3.6 成核於中間層(Nucleation on intermediate layer) 31 3.7 化學處理法(Chemical treatment) 58 3.8 離子佈植(Ion implantation) 61 3.9 偏壓輔助成核(Bias enhanced nucleation) 62 3.10 鑽石成核對沉積鑽石薄膜之影響 69 第四章 實驗 74 4.1 前言 74 4.2 實驗儀器與耗材介紹 75 4.2.1耗材介紹: 75 4.2.2實驗設備與量測儀器介紹: 76 4.3 實驗步驟 83 4.4 實驗結果與討論 86 4.4.1 鑽石成核於石墨烯(Graphene)與石墨烷(Graphane) 86 4.4.2 鑽石成核於化學前處理後之矽與二氧化矽基板 93 4.4.3 氫氣(H2)含量對於鑽石成核密度之影響 97 4.4.4 甲烷(CH4)含量對於鑽石成核密度之影響 104 4.4.5 成長時間對於鑽石成核密度之影響 106 4.4.6 鑽石成核於磷酸三銨((NH4)3PO4)前處理之基板 110 4.4.7 鑽石成核於不同MPCVD條件下 112 4.4.8 鑽石成核於大面積基板與實驗的可重複性 121 4.4.9 表面張力之影響 125 4.4.10 鑽石成核於第二種化學溶液前處理法 126 4.4.11 咖啡環漬效應(Coffee ring effect) 132 4.5 化學處理法之鑽石成核機制研究與探討 137 4.6 鑽石薄膜沉積 151 第五章 結語 155 第六章 未來展望 157 參考文獻 159

    [1] A.K. Geim, P. Kim, scientific American, inc.298, 90-97, (April 2008).
    [2] Pierson, H. O. “Handbook of carbon, graphite, diamond, and fullerenes :
    properties, processing, and applications.” Park Ridge, N.J., U.S.A., Noyes
    Publications, (1993).
    [3] Davis, R. F. “Diamond films and coatings : development, properties, and
    applications.” Park Ridge, N.J., Noyes Pub, (1993).
    [4] Hazen, R. M. “The diamond makers.” New York, Cambridge University
    Press, (1999).
    [4] Bundy, F. P., Hall, H. T., Strong, H. M. and Wentorf, R. H. Jr., Nature
    176:51(1955)
    [5] Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf,
    R. H. Jr., Nature 184:1094 (1959)
    [6] Field, J. E. “The Properties of diamond.” London ; New York, Academic
    Press, (1979).
    [7] Davies, G. ‘Diamond.” Bristol, A. Hilger, (1984).
    [8] Wilks, J. and E. Wilks. “Properties and applications of diamond.” Oxford ;
    Boston, Butterworth-Heinemann, (1991).
    [9] Field, J. E. “The Properties of natural and synthetic diamond.” London ;
    San Diego, Academic Press, (1992).
    [10] Gruen, D. M., O. A. Shenderova, et al. “Synthesis, properties, and
    applications of ultrananocrystalline diamond.” Dordrecht ; New York,
    Springer, (2005).
    [11] Shenderova, O. A. and D. M. Gruen. “Ultrananocrystalline diamond :
    synthesis, properties, and applications.” Norwich, N.Y., William Andrew
    Pub, (2006).
    [12] David Saada, Diamond and graphite properties, (2000).
    [13] Nemanich, R. J., Shroder, R. E., Glass, J. T. and Lucovsky, G., Proc. of
    the 19th Int. Cord. on the Physics of Semiconductors, (W. Zawadzki, ed.)
    p 515, Inst. Of Physics, Polish Acad. of Science, Warsaw (1966)
    [14] Frondel, C., U.B. Marvin, “Lonsdaleite, a new hexagonal polymorph of
    diamond.” Nature 214, 587 - 589, May (1967).
    [15] Koji Kobashi, “Diamond Films Chemical Vapor Deposition for Oriented
    and Heteroepitaxial Growth”, Elsevier Ltd, ISBN: 978-0-08-044723-0,
    (2005).
    [16] Chris J.H. Wort, Richard S. Batmer, materialstoday, JAN-FEB (2008).
    [17] S. Yugo, T. Kanai, T. Kimura and T. Muto: ‘Generation of diamond nuclei
    by electric field in plasma chemical vapor deposition’, Appl. Phys. Lett.,
    58, 1036–1038, (1991).
    [18] Stoner B.R. & Glass, J.T. Appl. Phys. Lett., 60, 698, (1992).
    [19] B. R. Stoner, G.-H. M. Ma, S. D. Wolter and J. T. Glass: ‘Characterization
    of bias-enhanced nucleation of diamond on silicon by invacuo surface
    analysis and transmission electron microscopy’, Phys. Rev. B, 45B,
    11067–11084, (1992).
    [20] Stoner, B.R., Kao, C., Malta, D.M. & Glass, R.C. Appl. Phys. Lett., 62,
    2347, (1993).
    [21] Kawarada, H., Wild, C., Herres, N., Locher, R., Koidl, P. & Nagasawa, H.
    J. Appl.Phys., 81, 3490, (1997).
    [22] Shintani, Y. J. Mater. Res., 11, 2955, (1996).
    [23] Tachibana, T., Yokota, Y., Nishimura, K., Miyata, K., Kobashi, K. &
    Shintani, Y. Diamond and Related Mater., 5, 197, (1996).
    [24] Ohtsuka, K., Suzuki, K., Sawabe, A. & Inuzuka, T. Jpn. J. Appl. Phys., 35,
    L1072, (1996).
    [25] Saito, T., Tsuruga, Sh., Ohya, N., Kusakabe, K., Morooka, Sh., Maeda, H.,
    Sawabe, A. & Suzuki, K. Diamond and Related Mater., 7, 1381, (1998).
    [26] F. HÖrmann, H. Roll, M. Schreck and B. Stritzker: ‘Epitaxial Ir layers on
    SrTiO3 as substrates for diamond nucleation: deposition of the films and
    modification in the CVD environment’, Diamond Relat. Mater., 9,
    256–261, (2000).
    [27] Ohtsuka, K., Fukuda, H., Suzuki, K. & Sawabe, A. Jpn. J. Appl. Phys., 36,
    L1214, (1997).
    [28] Diamond." Electronic Properties and Applications, Eds. Pan, L.S. &
    Kania, D.R. (Kluwer, Boston), (1995).
    [29] Gluche, P., Adamschik, M., Vescan, A., Ebert, W., Szücs, F., Fecht, H.J.,
    F1Öter, A.,Zachai, R. & Kohn, E. Diamond and Related Mater., 7, 779,
    (1998).
    [30] Kohn, E., Ebert, W., Adamschik, M., Schmid, P. & Denisenko, A. New
    Diamond Science and Technology (MYU, Tokyo), 11, 81, (2001).
    [31] Handbook of Industrial Diamond and Diamond Films Eds. Prelas, M.A.,
    Popovici, G. & Bigelow L.K. (Marcel Dekker, New York), (1998).
    [32] Watanabe, H., Takeuchi, D., Yamanaka, S., Okushi, H., Kajimura, K. &
    Sekiguchi, T. Diamond and Related Mater., 8, 1272, (1999).
    [33] Takeuchi, D., Watanabe, H., Yamanaka, S., Okushi, H. & Kajimura, K.,
    Diamond and Related Mater., 9, 231 (2000).
    [34] Okushi, H. Diamond and Rehtted Mater., 10, 281, (2001).
    [35] Ri, S.-G., Yoshida, H., Yamaoka, S., Watanabc, H., Takcuchi, D. &
    Okushi, H. J. Cryst. Growth, 235, 300, (2002).
    [36] Sternshulte, H., Albrecht, T., Thonke, K., Saue, R., Griel3er, M. &
    Grasscrbauer, M. Mater. Res. Soc. Syrup. Proc., 423, 693, (1996).
    [37] Remes, Z., Uzan-Saguy, C., Baskin, E., Kalish, R., Avigal, Y., Neslfidek,
    M. & Koizumi, S. Diamond and Related Mater., 13, 713, (2004).
    [38] Sauer, R., Teofilov, N., Thonke, K. & Koizumi, S. Diamond and Related
    Mater., 13, 727, (2004).
    [39] Iijima, S., Aikawa, Y. & Baba, K. Appl. Phys. Lett., 57, 2646, (1990).
    [40] Kamo, M., Sato, Y., Matsumoto, S. & Setaka, N., J. Cryst. Growth, 62,
    642, (1983).
    [41] Kamo, M., Matsumoto, S., Sato, Y. & Setaka, N.,US patent No.
    4,434,188, (1984).
    [42] Sevillano, E., Low Pressure Synthetic Diamond Manufacturing and
    Applications, Eds. Dischler, B. & Wild, C. (Springer-Verlag, Berlin), 11,
    (1998).
    [43] Schwander, M. and K. Partes. "A review of diamond synthesis by CVD
    processes." Diamond and Related Materials 20(9): 1287-1301, (2011).
    [44] A. Sawabe, H. Yasuda, T. Inuzuka, K. Suzuki, Appl. Surf. Sci. 33–34 539,
    (1988).
    [45] Sawabe, A. and H. Fukuda (1998). "Heteroepitaxial growth of diamond."
    Electronics and Communications in Japan Part Ii-Electronics 81(7): 28-37.
    [46] Baik, Y.-J., Lee, J.-K., Lee, W.-S. & Eun, K.Y., J. Mater. Res., 13, 944,
    (1998).
    [47] Baik, Y. J., J. K. Lee, et al., "Large area deposition of thick diamond film
    by direct-current PACVD." Thin Solid Films 341(1-2): 202-206, (1999).
    [48] Gurbuz, Y., O. Esame, et al. "Diamond semiconductor technology for RF
    device applications." Solid-State Electronics 49(7): 1055-1070, (2005).
    [49] Williams, O. A. "Nanocrystalline diamond." Diamond and Related
    Materials 20(5-6): 621-640, (2011).
    [50] Das, D. and R. N. Singh. "A review of nucleation, growth and low
    temperature synthesis of diamond thin films." International Materials
    Reviews 52(1): 29-64, (2007).
    [51] M.A. Prelas, G. Popovici, L.K. Bigelow, Handbook of Industrial
    Diamonds and Diamond Films, Marcel Dekker Inc, New York,
    p.1214,(1998).
    [52] X. Jiang, K. Schiffmann, C.P. Klages, Physical Review B 50 (12)
    8402–8410, (1994).
    [53] K. Ohtsuka, K. Suzuki, A. Sawabe, T. Inuzuka, Japanese Journal of
    Applied Physics Part 2—Letters 35 (8B) L1072–L1074, (1996).
    [54] S. Matsumoto, Y. Sato, M. Kamo, J. Tanaka and N. Setaka: ‘Chemical
    vapor deposition of diamond from methane–hydrogen gas’, Proc. 7th Int.
    Conf. on ‘Vacuum metallurgy’, Tokyo, Japan, November (1982), Iron and
    Steel Institute of Japan, 386–391.
    [55] H. Liu and D. D. Dandy: ‘Studies on nucleation process in diamond CVD:
    an overview of recent developments’, Diamond Relat. Mater, 4,
    1173–1188, (1995).
    [56] K. Mitsuda, Y. Kojima, T. Yoshida and K. Akashi: ‘The growth of
    diamond in microwave plasma under low pressure’, J. Mater. Sci., 22,
    1557–1562, (1987).
    [57] H. Maeda, S. Masuda, K. Kusakabe and S. Morooka:‘Nucleation and
    growth of diamond in a microwave plasma on substrate’, J. Cryst. Growth,
    121, 507–515, (1992).
    [58] S.-T. Lee, Z. D. Lin and X. Jiang: ‘CVD diamond films: nucleation and
    growth’, Mater. Sci. Eng., 25, 123–154, (1999).
    [59] B. Singh, Y. Arie, A. W. Levine and O. R. Mesker: ‘Effects of filament
    and reactor wall materials in low-pressure chemical vapor deposition
    synthesis of diamond’, Appl. Phys. Lett., 52, 451–452, (1988).
    [60] P. Ascarelli, S. Fontana, Applied Surface Science 64 (4) 307–311 (1993).
    [61] S. Iijima, Y. Aikawa, K. Baba, Applied Physics Letters 57 (25) 2646–2648
    (1990).
    [62] R. Akhvlediani, I. Lior, S. Michaelson, A. Hoffman, Diamond and Related
    Materials 11 (3–6) 545–549, (2002).
    [63] S. Iijima, Y. Aikawa and K. Baba: ‘Growth of diamond particles in
    chemical vapor deposition’, J. Mater. Res., 6, 1491–1497, (1991).
    [64] J. Singh: ‘Nucleation and growth mechanism of diamond during
    hot-filament chemical vapor deposition’, J. Mater. Sci., 29, 2761–2766,
    (1994).
    [65] W. R. L. Lambrecht, C. H. Lee, B. V. Segall, J. C. Angus, Z. Li and M.
    Sunkara: ‘Diamond nucleation by hydrogenation of the edges of graphitic
    precursors’, Nature, 364, 607–610, (1993).
    [66] K. Mallika and R. Komanduri: ‘Diamond coatings on cemented tungsten
    carbide tools by low-pressure microwave CVD’, Wear, 224, 245–266,
    (1999).
    [67] F. Shahedipour, B. P. Conner and H. W. White: ‘Optical properties of
    plasma species absorbed during diamond deposition on steel’, J. Appl.
    Phys., 88, 3039–3046, (2000).
    [68] J. G. Buijnsters, F. M. van Bouwelen, J. J. Schermer, W. J. P. van
    Enckevort and J. J. ter Meulen: ‘Chemical vapor deposition of diamond on
    nitrided chromium using an oxyacetylene flame’, Diamond Relat. Mater.,
    9, 341–345, (2000).
    [69] Z. Dai, C. Bednarski-Meinke and B. Golding: ‘Heteroepitaxial diamond
    film growth: the a-plane sapphire–iridium system’, Diamond Relat.
    Mater., 13, 552–556, (2004).
    [70] M. D. Whitfield, J. A. Savage and R. B. Jackman: ‘Nucleation and growth
    of diamond films on single crystal and polycrystalline tungsten
    substrates’, Diamond Relat. Mater., 9, 262–266, (2000).
    [71] S. A. Catledge and Y. K. Vohra: ‘Interfacial oxide and carbide phases in
    the deposition of diamond films on beryllium metal’, Diamond Relat.
    Mater., 9, 1327–1330, (2000).
    [72] C. Z. Gu, X. Jiang, L. Kapplus and S. Mantl: ‘Comparison study of
    nucleation and growth characteristics of chemical-vapordeposited
    diamond films on CoSi2(001) and Si(001)’, J. Appl. Phys., 87, 1743–1747,
    (2000).
    [73] M. R. Chen, L. Chang., D. F. Chang and H. G. Chen: ‘Diamond growth on
    CoSi2/Si by bias-enhanced microwave plasma chemical vapor deposition
    method’, Mater. Chem. Phys., 72, 172–175, (2001).
    [74] T. P. Ong, F. Xiong, R. P. H. Chang and C. W. White: ‘Nucleation and
    growth of diamond on carbon-implanted single crystal copper surfaces’, J.
    Mater. Res., 7, 2429–2439, (1992).
    [75] K.-L. Chuang, L. Chang. and C.-A. Lu: ‘Diamond nucleation on Cu by
    using MPCVD with a biasing pretreatment’, Mater. Chem. Phys., 72,
    176–180, (2001).
    [76] L. Nistor, V. Buschmann, V. Ralchenko, G. Dinca, I. Vlasov, J. Van
    Landuyt and H. Fuess: ‘Microstructural characterization of diamond films
    deposited on c-BN crystals’, Diamond Relat. Mater., 9, 269–273, (2000).
    [77] Z. Feng, K. Komvopoulos, I. G. Brown and D. C. Bogy: ‘Effect of
    graphitic carbon films on diamond nucleation by microwave
    plasma-enhanced chemical-vapor deposition’, J. Appl. Phys., 74,
    2841–2849, (1993).
    [78] I. Endler, A. Leonhardt, H.-J. Scheibe and R. Born: ‘Interlayers for
    diamond deposition on tool materials’, Diamond Relat. Mater., 5,
    299–303, (1996).
    [79] H. Jeon, C. L. Wang, A. Hatta and T. Ito: ‘Nucleation-enhancing treatment
    for diamond growth over a large-area using magnetoactive microwave
    plasma chemical vapor deposition’, J. Appl. Phys., 88, 2979–2983,
    (2000).
    [80] K. V. Ravi, C. A. Koch, H. S. Hu and A. Joshi: ‘Nucleation and
    morphology of diamond crystals and films synthesized by the combustion
    flame technique’, J. Mater. Res., 5, 2356–2366, (1990).
    [81] C. P. Chang, D. L. Flamm, D. E. Ibbotson and J. A. Mucha: ‘Diamond
    crystal growth by plasma chemical vapor deposition’, J. Appl. Phys., 63,
    1744–1748, (1988).
    [82] C. H. Lee, Z. D. Lin, N. G. Shang, L. S. Liao, I. Bello, N. Wang and S. T.
    Lee: ‘Surface passivation in diamond nucleation’, Phys. Rev. B, 62B,
    17134–17137, (2000).
    [83] J. Yang, X. W. Su, Q. J. Chen and Z. D. Lin: ‘Si+ implantation: a
    pretreatment method for diamond nucleation on a Si wafer’, Appl. Phys.
    Lett., 66, 3284–3286, (1995).
    [84] H. Sein, W. Ahmed, M. Jackson, R. Polini, I. Hassan, M. Amar and C.
    Rego: ‘Enhancing nucleation density and adhesion of polycrystalline
    diamond films deposited by HFCVD using surface treatments on Co
    cemented tungsten carbide’, Diamond Relat. Mater., 13, 610–615, (2004).
    [85] Williams, O. A. and M. Nesladek. "Growth and properties of
    nanocrystalline diamond films." Physica Status Solidi a-Applications and
    Materials Science 203(13): 3375-3386, (2006).
    [86] C. J. Tang, A. J. Neves and A. J. S. Fernandes: ‘Influence of nucleation
    density on film quality, growth rate and morphology of thick CVD
    diamond films’, Diamond Relat. Mater., 12, 1488–1494, (2003).
    [87] G. S. Yang, M. Aslam, K. P. Kuo, D. K. Reinhard and J. Asmussen:
    ‘Effect of ultrahigh nucleation density on diamond growth at different
    growth rates and temperatures’, J. Vac. Sci. Technol. B, 13B, 1030–1036,
    (1995).
    [88] Zhou, D., D. M. Gruen, et al. "Control of diamond film microstructure by
    Ar additions to CH4/H2 microwave plasmas." Journal of Applied Physics
    84(4): 1981-1989, (1998).
    [89] Pfeiffer, R., H. Kuzmany, et al. "Evidence for trans-polyacetylene in
    nano-crystalline diamond films." Diamond and Related Materials 12(3-7):
    268-271, (2003).
    [90] Williams, O. A., A. Kriele, et al. (2010). "High Young's modulus in ultra
    thin nanocrystalline diamond." Chemical Physics Letters 495(1-3): 84-89.
    [91] Deegan, R. D., O. Bakajin, et al. "Capillary flow as the cause of ring stains
    from dried liquid drops." Nature 389(6653): 827-829, (1997).
    [92] Yunker, P. J., T. Still, et al. "Suppression of the coffee-ring effect by
    shape-dependent capillary interactions." Nature 476(7360): 308-311,
    (2011).
    [93] Takahiro, K., K. Kawatsura, et al. "Difference in stopping cross section
    factor for He-4 ions between polycrystalline diamond and glassy carbon."
    Nuclear Instruments & Methods in Physics Research Section B-Beam
    Interactions with Materials and Atoms 249: 43-46, (2006).
    [94] Ossi, P. M., C. E. Bottani, et al. "Pulsed laser deposition of nano-glassy
    carbon films." Applied Surface Science 248(1-4): 334-339, (2005).
    [95] Ferrari, A. C. and J. Robertson. "Resonant Raman spectroscopy of
    disordered, amorphous, and diamondlike carbon." Physical Review B
    64(7), (2001).
    [96] Tang, C. J., M. A. Neto, et al. "A comparison study of hydrogen
    incorporation among nanocrystalline, microcrystalline and polycrystalline
    diamond films grown by chemical vapor deposition." Thin Solid Films
    515(7-8): 3539-3546, (2007).
    [97] Takahiro, K., K. Kawatsura, et al. "Difference in stopping cross section factor for He-4 ions between polycrystalline diamond and glassy carbon." Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 249: 43-46, (2006).
    [98] Ferrari, A. C. and J. Robertson. "Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon." Physical Review B 64(7), (2001).
    [99] Actis, P., G. Caulliez, et al. "Functionalization of glassy carbon with diazonium salts in ionic liquids." Langmuir 24(12): 6327-6333, (2008).
    [100]Xie, F. Y., W. G. Xie, et al. "Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient." Surface and Interface Analysis 42(9): 1514-1518, (2010).

    下載圖示 校內:2014-08-29公開
    校外:2014-08-29公開
    QR CODE