簡易檢索 / 詳目顯示

研究生: 蔡諄樺
Tsai, Chun-hua
論文名稱: 脊椎手術輔助訓練系統設計與製作
The computer-aided training system for pedical screw implantation
指導教授: 方晶晶
Fang, Jing-Jing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 126
中文關鍵詞: 脊椎手術電腦輔助手術
外文關鍵詞: pedical screw implantation, X-ray, training, fluoroscopy
相關次數: 點閱:98下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究發展一套智慧式的電腦輔助脊椎訓練手術導引系統,以自行設計實作之脊椎鑽孔訓練裝置,由專業醫師先行於人工假 骨頭(Sawbone)上設定示範用定點座標與方位,經X光機取得AP/Lat.兩張影像,透過X光機校正程式校正後並經影像對正建立出影像間的座標系統,再導入三維座標量測儀(MicroScribe G2X),受訓醫師參考所開發導引軟體之影像資訊,於Sawbone上進行穿刺方位訓練,提供示範座標之方位並分析其差異。
      本研究結合相機校正、影像處理與對正等技術,經由空間幾何的圖學技術於軟體上即時展現導引設備的方位資訊,提供醫師直覺化的3D空間資訊介面。以此系統為臨床應用之先導性研究,並以之訓練實習醫師椎足鑽孔的空間感,達到手術訓練目的。

      In this research, we present a computer-aided training system for pedicle screw implantation. Based on the imaging from fluoroscopic X-ray, the techniques include camera calibration, image registration, coordinate transformation, and also invoke a 3D digitizing device (MicroScribe G2X) for training navigation. In the beginning of experiment, sawbones with pre-placed makers (steel balls) are setuped as the practice targets. Before training, an experienced surgeon screws many deep holes as references on the sawbones. According two biplane imagings(AP/Lat.), we can construct the 3D spacing relationship between the biplane imagings and visualize on the designed software. Depend on the 3D orientations provided by the system, the interns or trainees operate the digitizing device’s stylus to set up the chosen pedicles’ directions on the sawbones in the training phase. The outcomes were compared with the reference angles. The trainees can repeat the procedures and practicing several times. We hope to assist the interns be more skillfal in pedicle screw implantation surgery and earily become a experienced surgeon.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第1章 前言 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 1.4 本文架構 3 第2章 相關文獻回顧 5 2.1 相機校正 6 2.2 影像對正演算法 7 2.3 手術輔助導引系統 10 2.3.1 脊椎手術 11 2.3.2 心血管造影術 15 2.3.3 膝關節手術 18 2.3.4 髖關節手術 19 第3章 手術訓練系統設計 23 3.1 系統架構 23 3.1.1 設計需求 23 3.1.2 設計構想 25 3.1.3 系統設計 26 3.2 硬體規劃 28 3.2.1 輔助導引設備 28 3.2.2 訓練裝置製作 29 3.2.3 設計裝置之精度測試 31 3.2.3.1 導引裝置之精度測試 31 3.3軟體介面 39 3.3.1 功能需求 40 3.3.2 DICOM檔頭處理 42 3.3.3軟體架構 48 3.4 系統整合與操作流程 50 第4章 X光機影像定位 56 4.1 相機校正 56 4.1.1 相機模型建立 56 4.1.2 蔡氏校正法 62 4.2 程式實作流程與結果 71 第5章 影像對正與系統座標轉換 77 5.1 影像對正 77 5.1.1 影像處理流程 77 5.1.2 實作結果 85 5.2座標轉換 86 第6章 精度驗證實驗與導引訓練 89 6.1 精度實驗 89 6.1.1 對照組精度實驗 89 6.1.2 實驗精度實驗 92 6.1.3 座標轉換實驗 94 6.1.4 預設方位角之計算 96 6.1.5 椎足鑽孔訓練實驗 98 6.2 教學訓練使用流程 101 6.3 結果討論 103 第7章 結論與建議 105 參考文獻 109 附錄 115

    [1] Fahrig, R., Moreau, M. and Holdsworth, D. W., “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: correction of image intensifier distortion,” Medical Physics, Vol. 24, No. 7, pp. 1097-1106, 1997.
    [2] Martins, H. A., Birk J. R. and Kelley, R. B., “Camera models based on data from two calibration, planes,” Computer Graphics and Image Processing, Vol. 17, pp. 173-180, 1981.
    [3] Gruen, A. and Huang, T.S., “Calibration and orientation of cameras in computer vision”, Springer-Verlag Berlin Heidelberg. 2001.
    [4] Hartley, R. I. and Saxena, T., “The Cubic Rational Polynomial Camera Model”, DARPA, pp. 649-654, 1997.
    [5] Reinhard, K., Karsten, S. and Andreas, K., “Computer Vision Three-Dimensional Data from Images”, Springer-Verlag Singapore Pte. Ltd. 1998.
    [6] Tsai, R. Y., “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the –Shelf TV Cameras and Lenses”, IEEE Journal of robotics and automation, vol. RA-3, NO. 4, pp. 323 - 344, Aug. 1987.
    [7] Tsai, R. Y. and Lenz, R. K. , “Technique for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology”, IEEE transactions on pattern analysis and machine intelligence, vol. 10, NO. 5, Sep. 1988.
    [8] Zitova, B. and Flusser, J., “Image registration methods a survey,” Image and Vision Computing, vol. 21, pp. 977–1000, 2003.
    [9] Reimann, D. A. and Flynn, M. J., “Automated distortion correction of X-ray image intensifier images,” Proceedings of IEEE 1992 Nuclear Science Symposium and Medical Imaging Conference, vol.2, pp. 1339-1341, 1992.
    [10] Brack, Ch., Gotteb, H. and Gossec, F. et. al., “Towards Accurate X-Ray-Camera Calibration in Computer-Assisted Robotic Surgery”, Proceedings of International symposium on Computer Assisted Radiology, 721-728, 1996.
    [11] Qinfen, Z. and Chellappa, R., “Automatic registration of oblique aerial images,” Proceedings of IEEE International Conference on Image Processing (ICIP-94), Vol. 1, pp. 218-222, 1994.
    [12] Soimu, D., Badea, C. and Pallikarakis, N., " A Novel Approach for Distortion Correction for the XRII", CMIG, 2002.
    [13] Yaniv, Z., Joskowicz, L., Simkin, A., et al., “Fluoroscopic image processing for computer-aided orthopaedic surgery,” Medical Image Computing and Computer-Assisted Intervention, pp. 325-334, 1998.
    [14] Yaniv, Z., Sadowsky, O. and Joskowicz, L., “In-vitro accuracy study of contact and image-based registration: materials, methods, and experimental results,” Computer Assisted Radiology and Surgery 2000, pp. 141-146, 2000.
    [15] Hassfeld, S. and Muhling, J., “Computer assisted oral and maxillofacial surgery—a review and an assessment of technology,” Int. J. Oral Maxillofac. Surg., 30: 2– 13, 2001.
    [16] Hoelzl, A., Fischer, M. and Verheyden, A.P. et. al., “Navigation of the spine—a new chance for education and training,” International Congress Series, Vol. 1256, pp. 472-475, 2003.
    [17] Abdel-Malek, K., McGowan, D. and Goel, V.K. et. al., "Bone Registration Method for Robot-Assisted Surgery: Pedicle Screw Insertion," IMechE Journal of Engineering in Medicine, Vol. 211, Part H, pp. 221-233.
    [18] Cleary, K., Stoianovici, D. and Watson V. et. al., “Robotics for Percutaneous Spinal Procedures: Initial Report,” Computer Assisted Radiology and Surgery, pp.128- 133, 2000.
    [19] Cleary, K., Stoianovici, D. and Watson V. et al., “Robotically assisted spine needle placement: program plan and cadaver study,” Proceedings of 14th IEEE Symposium on Computer-Based Medical Systems, pp. 339-342,2001.
    [20] Davies, B., “A review of robotics in surgery”, Proceeding of IMechE, Vol. 214, Part H, pp. 129-140, 2000.
    [21] Gueziec, A., Kazanzides, P. and Williamson, B. et. al., “Anatomy-based registration of CT-scan and intraoperative X-ray images for guiding a surgical robot,” IEEE Transactions on Medical Imaging, Vol. 17, pp. 715-728, 1998.
    [22] Navab, N., Bascle, B. and Loser, M., ”Needle placement under X-ray fluoroscopy using perspective invariants,” Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 46 – 53, 2000.
    [23] Navab, N., Bascle, B. and Loser, M. et. al., “Visual Servoing For Automatic and Uncalibrated Needle Placement For Percutaneous Procedures,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 327-334, 2000.
    [24] Santos-Munné, J. J., Peshkin, M. A. and Mirkovic, S. et. al., “A Stereotactic/Robotic System for Pedicle Screw Placement”, Proceedings of Medicine Meets Virtual Reality III, Interactive Technology and the New Paradigm for Healthcare, pp. 326-333, 1995.
    [25] Yao, J., Taylor, R. H. and Goldberg, R. P. et. al., “A C-Arm Fluoroscopy -Guided Progressive Cut Refinement Strategy Using a Surgical Robot”, Computer Aided Surgery, 5:373–390, 2000.
    [26] Merloz, P., Tonetti, J. and Pittet, L., “Computer-assisted spine surgery,” Computer Aided Surgery, Vol. 3, Issue 6, pp. 297-305, 1998.
    [27] Nolte, L.P., Slomczykowski, M. and Hofstetter, R.et. al., “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Computer Aided Surgery, Volume 4, Issue 2, pp. 65-76, 1999.
    [28] Nolte, L.P., Slomczykowski, M.A. and Berlemann, U. et. al., “A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation,” Eur Spine J9 (Suppl 1) :S78–S88, 2000.
    [29] 王舜民,“骨科手術用C-arm影像輔助規劃及導引系統” ,國立中央大學機械工程所碩士論文,2002年。
    [30] Delorme, S., Labelle, H. and Poitras, B. et. al., “Pre-, Intra-, and postoperative Three-Dimensional Evaluation of Adolescent Idiopathic Scoliosis,” Journal of Spinal Disorders, Vol. 13, No. 2, pp. 93-101, 2000.
    [31] Holly, L. T. and Foley, K. T., “Intraoperative spinal navigation”, SPINE, Vol. 28, Number 15S, pp. S54-S61, 2003.
    [32] Poradaa, S., Millnerb, P. A. and Chivertonb, N. et. al., “Computer Aided Surgery with Lumbar Vertebral Drill-guides, Using Computer Aided Planning,Design and Visualisation,” Proceedings of Medical Image Understanding and Analysis, 2001.
    [33] Kalfas, I. H., “Image-guided spinal navigation: application to spinal metastases,” Neurosurg. Focus, vol. 11, pp. 1-10, 2001.
    [34] Meyer, S. A. and Wolf, P. D., “Registration of three-dimensional cardiac catheter models to single-plane fluoroscopic images,” Proceedings of IEEE Transactions on Biomedical Engineering, Vol. 46, pp.1471 – 1479, 1999.
    [35] Cheriet, F. and Meunier, J., “Self-calibration of a biplane X-ray imaging system for an optimal three dimensional reconstruction,” Computerized Medical Imaging and Graphics, vol. 23, Issue 3, pp. 133-141, May 1999.
    [36] Canero, C., Radeva, P. and Toledo, R. et. al., “3D curve reconstruction by biplane snakes,” Proceedings of 15th International Conference on Pattern Recognition, vol.4 , pp. 563 – 566, 2000.
    [37] Baert, S.A.M., van de Kraats, E.B. and van Walsum, T. et. al., “Three-dimensional guide-wire reconstruction from biplane image sequences for integrated display in 3-D vasculature,” IEEE Transactions on Medical Imaging, Vol. 22 pp. 1252 – 1258, 2003.
    [38] Suhm, N., Jacob, A.L. and Nolte, L.P. et. al., “Surgical navigation based on fluoroscopy - clinical application for computer-assisted distal locking of intramedullary implants,” Computer Aided Surgery, Vol. 5, Issue 6, pp. 391-400, 2000.
    [39] Mahfouz, M. R., Hoff, W. A. and Komistek, R.D. et. al., “A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images,” Proceedings of IEEE Transactions on Medical Imaging, Vo. 22, Issue 12, pp. 1561 – 1574, 2003.
    [40] Schep, N.W.L., Walsum, Th. Van. and Graaf, J.S. de. Et al., “Validation of Fluoroscopy-Based Navigation in the Hip Region: What You See Is What You Get? “Computer Aided Surgery, Volume 7, Issue 5, pp. 279-283, 2002.
    [41] Bodduluri, R.M.C. and McCarthy, J.M., "X-ray guided robotic radiosurgery for solid tumors,” Proceedings of 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vo. 2, pp. 1065-1069, 2001.
    [42] Subir, N., Rafael, M.M. and Ellis, R. et. al., “The use of fluoroscopy to guide needle placement in interstitial gynecological brachytherapy,” International Journal of Radiation Oncology Biology Physics, Vol. 40, Issue 2, pp. 415-420, 1998.
    [43] Sonka, M., Hlavac, V. and Boyle, R., “Image Processing, Analysis, and Machine Vision,” Second Edition, PWS Publishing, 1998
    [44] Gonzalez , R.C. and Woods, R.E., “Digital Image Processing,” Second Edition, Prentice HALL, 2002.

    下載圖示 校內:2009-07-20公開
    校外:2009-07-20公開
    QR CODE