簡易檢索 / 詳目顯示

研究生: 吳銘達
Wu, Ming-Da
論文名稱: 從affordance的觀點探討手機虛擬按鈕的輸入偏移之校正回饋機制
Investigating Corrective Feedback for Input Offsets of Virtual Buttons on Smartphones From an Affordance Perspective
指導教授: 陳璽任
Chen, Hsi-Jen
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 234
中文關鍵詞: 觸控螢幕行動裝置視覺線索視覺回饋扁平化設計
外文關鍵詞: Touchscreen, Mobile Device, Visual Cue, Visual Feedback, Flat Design
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在行動裝置的數位環境中,虛擬按鈕是最受歡迎的互動元素之一。 然而,許多虛擬按鈕的尺寸小於建議值,容易導致錯誤點擊。而在提升按鈕輸入表現的方法中,目前最流行的是以語言模型為基礎的預測文字輸入法,但它是無法用來改善非文字類按鈕的輸入表現。因此,本研究根據偏移模型與使用者具有點擊視覺線索的自然傾向,發展一種新的視覺回饋。此外,過去研究證實在觸控螢幕上存在著on-screen affordances。但是在智慧型手機裡,虛擬按鈕的on-screen affordances特性尚不清楚。因此,本研究透過檢驗虛擬鍵盤按鈕的視覺屬性,以驗證虛擬按鈕的on-screen affordances,觀察這些視覺屬性能否提供可能的點擊動作。本研究共進行五個實驗,皆採用受試者內設計,獨變項計有「符號位置」、「按鈕邊框」與「按鈕位置」變項,依變項包含可反映按鈕輸入準確度與速度的四項指標與系統可用性量表分數。每個實驗各自招募30 名受試者,要求他們在智慧型手機上用右手拇指連續點擊不同樣式的虛擬鍵盤按鈕。實驗結果如下。實驗一證實無論受試者採用什麼點擊策略,他們皆具有朝符號點擊的自然傾向,並發現這種傾向會隨按鈕的位置而調整。實驗二根據這種自然的點擊傾向開發一個偏移校正符號的演算法,可有效提升輸入準確度。實驗三與實驗四證實偏移校正符號不僅影響點擊行為的感覺層面,還影響動作層面。此外,提高偏移校正符號的視覺強度有助於輸入準確度的提升。實驗五顯示當受試者了解偏移校正符號的功能時,可以取得更好的輸入準確度,並發現它能提升無邊框按鈕的輸入速度。因此,偏移校正符號可在不降低輸入速度下提升輸入準確度。本研究透過探索使用者點擊虛擬按鈕的行為來拓展on-screen affordances的知識,並提供可提升按鈕輸入表現的設計建議。

    In the digital environment of mobile devices, virtual buttons are one of the most popular interactive elements. However, the size of many virtual buttons is below the recommended value, resulting in more erroneous taps. Furthermore, the popular predictive text entry method based on language models cannot be applied to non-text virtual buttons. Therefore, the present study developed new visual feedback based on an offset model and a natural tendency to tap noticeable cues. Additionally, on-screen affordances exist on the touchscreen, but the on-screen affordance of virtual buttons on smartphones is unknown.  Thus, the present study investigated the on-screen affordances by examining whether the visual properties of virtual keyboard buttons afford possible clicking actions. The present study conducted five experiments that employed a within-subject design. Symbol position, button border, and button position are the independent variables. The error rate, X offset, Y offset, entry duration, and System Usability Scale scores are the dependent variables. Each experiment recruited 30 participants to perform the serial tapping task. All participants used their right thumb to tap virtual keyboard buttons with different button types. The results of five experiments are as follows. Experiment 1 confirmed the tendency to tap noticeable symbols and revealed that this tendency varied according to the button position. Experiment 2 developed a valid algorithm for offset-correcting symbols to effectively reduce the error rate and input offsets. Experiments 3 and 4 confirmed that offset-correcting symbols influenced tapping behavior not limited to the sensory level but also to the motor level. Moreover, enhancing the visual salience of offset-correcting symbols contributed to higher entry accuracy. Experiment 5 demonstrated that when the participants understood the function of offset-correcting symbols, they tapped virtual keyboard buttons with higher entry accuracy. Furthermore, offset-correcting symbols could improve the entry speed of borderless buttons. Therefore, offset-correcting symbols increased the entry accuracy without the speed-accuracy tradeoff. The present study contributed to the knowledge about on-screen affordances and provided design suggestions.

    摘要 i SUMMARY ii TABLE OF CONTENTS iii LIST OF TABLES viii LIST OF FIGURES xiii CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation and Purpose 1 1.2 Research Questions and Hypotheses 9 CHAPTER 2 LITERATURE REVIEW 14 2.1 Interaction with Virtual Buttons 14 2.1.1 Button Size 15 2.1.2 Button Position 23 2.2 Touchscreen Feedback 29 2.3 Feedback from an Affordance Perspective 35 2.3.1 Gibson and Norman on Affordance 35 2.3.2 Hartson on Affordance 36 2.3.3 Affordance of Virtual Buttons 41 2.3.4 On-screen Affordance 43 2.4 Research Framework 45 CHAPTER 3 EXPERIMENT 1 49 3.1 Method 50 3.1.1 Participants 50 3.1.2 Research Design 50 3.1.3 Materials 52 3.1.4 Apparatus 53 3.1.5 Procedure 54 3.1.6 Data Collection and Analysis 57 3.2 Results 57 3.2.1 Error Rate 62 3.2.2 X Offset 64 3.2.3 Y Offset 66 3.2.4 Entry Duration 68 3.2.5 Subjective Rating 69 3.3 Discussion 70 3.3.1 The tapping strategy and preference 70 3.3.2 The Effect of Symbol Positions 71 3.3.3 The Effect of Button Positions 72 CHAPTER 4 EXPERIMENT 2 74 4.1 Method 75 4.1.1 Participants 75 4.1.2 Research Design 76 4.1.3 Materials 78 4.1.4 Apparatus 79 4.1.5 Procedure 79 4.1.6 Data Collection and Analysis 80 4.2 Results 81 4.2.1 Error Rate 83 4.2.2 X Offset 85 4.2.3 Y Offset 88 4.2.4 Entry Duration 89 4.2.5 SUS Score 91 4.3 Discussion 94 CHAPTER 5 EXPERIMENT 3 96 5.1 Method 97 5.1.1 Participants 97 5.1.2 Research Design 98 5.1.3 Materials 99 5.1.4 Apparatus 100 5.1.5 Procedure 101 5.1.6 Data Collection and Analysis 102 5.2 Results 102 5.2.1 Error Rate 106 5.2.2 X Offset 106 5.2.3 Y Offset 109 5.2.4 Entry Duration 109 5.2.5 SUS Score 110 5.3 Discussion 111 5.3.1 The Effect of Symbol Positions 111 5.3.2 The Effect of Button Positions 113 5.3.3 Limitations and Future Directions 114 CHAPTER 6 EXPERIMENT 4 116 6.1 Method 117 6.1.1 Participants 117 6.1.2 Research Design 118 6.1.3 Materials 119 6.1.4 Apparatus 120 6.1.5 Procedure 121 6.1.6 Data Collection and Analysis 122 6.2 Results 123 6.2.1 Error Rate 127 6.2.2 X Offset 129 6.2.3 Y Offset 131 6.2.4 Entry Duration 133 6.2.5 SUS Score 133 6.3 Discussion 134 6.3.1 The Effect of Symbol Positions 135 6.3.2 The Effect of Button Positions 138 6.3.3 Limitations and Future Directions 139 CHAPTER 7 EXPERIMENT 5 140 7.1 Method 142 7.1.1 Participants 142 7.1.2 Research Design 142 7.1.3 Materials 143 7.1.4 Apparatus 145 7.1.5 Procedure 145 7.1.6 Data Collection and Analysis 146 7.2 Results 146 7.2.1 Error Rate 153 7.2.2 X Offset 155 7.2.3 Y Offset 159 7.2.4 Entry Duration 164 7.2.5 SUS Score 166 7.3 Discussion 170 7.3.1 The Effect of Symbol Positions 171 7.3.2 The Effect of Button Borders 173 7.3.3 The Effect of Button Positions 176 CHAPTER 8 GENERAL DISCUSSION 179 8.1 On-screen Affordance 180 8.2 Characteristics of Thumb Tapping 185 8.3 Limitations and Future Directions 187 CHAPTER 9 CONCLUSION 189 9.1 Design Guideline 189 9.2 Conclusion 190 REFERENCES 191 Appendix A THE POST-HOC ANALYSIS IN EXPERIMENT 1 202 Appendix B THE POST-HOC ANALYSIS IN EXPERIMENT 2 214

    Altinsoy, M. E., & Merchel, S. (2009). Audiotactile Feedback Design for Touch Screens. Proceedings of the 4th International Conference on Haptic and Audio Interaction Design, Dresden, Germany. https://doi.org/10.1007/978-3-642-04076-4_15
    Azenkot, S., & Zhai, S. (2012). Touch behavior with different postures on soft smartphone keyboards. Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, San Francisco, California, USA. https://doi.org/10.1145/2371574.2371612
    Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the System Usability Scale. International Journal of Human-Computer Interaction, 24(6), 574-594. https://doi.org/10.1080/10447310802205776
    Benko, H., & Wigdor, D. (2010). Imprecision, Inaccuracy, and Frustration: The Tale of Touch Input. In C. Müller-Tomfelde (Ed.), Tabletops - Horizontal Interactive Displays (pp. 249-275). Springer London. https://doi.org/10.1007/978-1-84996-113-4_11
    Beringer, D. B. (1990). Target Size, Location, Sampling Point and Instructional Set: More Effects on Touch Panel Operation. Proceedings of the Human Factors Society Annual Meeting, 34(4), 375-379. https://doi.org/10.1177/154193129003400430
    Beringer, D. B., & Peterson, J. G. (1985). Underlying Behavioral Parameters of the Operation of Touch-Input Devices: Biases, Models, and Feedback. Human Factors, 27(4), 445-458. https://doi.org/10.1177/001872088502700408
    Billinghurst, S. S., & Vu, K.-P. L. (2015). Touch screen gestures for web browsing tasks. Computers in Human Behavior, 53, 71-81. https://doi.org/10.1016/j.chb.2015.06.012
    Boring, S., Ledo, D., Chen, X. A., Marquardt, N., Tang, A., & Greenberg, S. (2012). The fat thumb: using the thumb's contact size for single-handed mobile interaction. Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, San Francisco, California, USA. https://doi.org/10.1145/2371574.2371582
    Brewster, S., Chohan, F., & Brown, L. (2007). Tactile feedback for mobile interactions. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, California, USA. https://doi.org/10.1145/1240624.1240649
    Brooke, J. (1996). SUS: A quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & I. L. McClelland (Eds.), Usability Evaluation in Industry (pp. 189-194). Taylor & Francis.
    Burlamaqui, L., & Dong, A. (2016). Affordances: bringing them out of the woods. interactions, 23(4), 80–82. https://doi.org/10.1145/2934292
    Burmistrov, I., Zlokazova, T., Izmalkova, A., & Leonova, A. (2015). Flat Design vs Traditional Design: Comparative Experimental Study. Proceedings of the 15th IFIP Conference on Human-Computer Interaction, Bamberg, Germany. https://doi.org/10.1007/978-3-319-22668-2_10
    Busch, P. A., & McCarthy, S. (2021). Antecedents and consequences of problematic smartphone use: A systematic literature review of an emerging research area. Computers in Human Behavior, 114, 106414. https://doi.org/10.1016/j.chb.2020.106414
    Chang, J., Choi, B., Tjolleng, A., & Jung, K. (2017). Effects of button position on a soft keyboard: Muscle activity, touch time, and discomfort in two-thumb text entry. Applied Ergonomics, 60, 282-292. https://doi.org/10.1016/j.apergo.2016.12.008
    Chang, J., & Jung, K. (2019). Effects of Button Width, Height, and Location on a Soft Keyboard: Task Completion Time, Error Rate, and Satisfaction in Two-Thumb Text Entry on Smartphone. IEEE Access, 7, 69848-69857. https://doi.org/10.1109/ACCESS.2019.2919108
    Chen, H.-J., & Kuo, C.-M. (2019). Investigation of the Effect of Letter Labeling Positions on Consecutive Typing on Mobile Devices. Proceedings of the 21st International Conference on Human-Computer Interaction, Orlando, FL, USA. https://doi.org/10.1007/978-3-030-22643-5_1
    Choi, B., Park, S., & Jung, K. (2013). Analysis of Perceived Discomfort and EMG for Touch Locations of a Soft Keyboard. In C. Stephanidis, HCI International 2013 - Posters’ Extended Abstracts Berlin, Heidelberg.
    Chourasia, A. O., Wiegmann, D. A., Chen, K. B., Irwin, C. B., & Sesto, M. E. (2013). Effect of Sitting or Standing on Touch Screen Performance and Touch Characteristics. Human Factors, 55(4), 789-802. https://doi.org/10.1177/0018720812470843
    Colle, H. A., & Hiszem, K. J. (2004). Standing at a kiosk: Effects of key size and spacing on touch screen numeric keypad performance and user preference. Ergonomics, 47(13), 1406-1423. https://doi.org/10.1080/00140130410001724228
    Conway, R. T., & Sangaline, E. W. (2017). A Monte Carlo simulation approach for quantitatively evaluating keyboard layouts for gesture input. International Journal of Human-Computer Studies, 99, 37-47. https://doi.org/10.1016/j.ijhcs.2016.10.001
    Fleetwood, M. D., & Byrne, M. D. (2002). Modeling icon search in ACT-R/PM. Cognitive Systems Research, 3(1), 25-33. https://doi.org/10.1016/S1389-0417(01)00041-9
    Fleetwood, M. D., & Byrne, M. D. (2006). Modeling the Visual Search of Displays: A Revised ACT-R Model of Icon Search Based on Eye-Tracking Data. Human–Computer Interaction, 21(2), 153-197. https://doi.org/10.1207/s15327051hci2102_1
    Gibson, J. J. (2014). The ecological approach to visual perception: classic edition. Psychology press.
    Hall, A. D., Cunningham, J. B., Roache, R. P., & Cox, J. W. (1988). Factors affecting performance using touch-entry systems: Tactual recognition fields and system accuracy. Journal of Applied Psychology, 73(4), 711-720. https://doi.org/10.1037/0021-9010.73.4.711
    Harari, G. M., Gosling, S. D., Wang, R., Chen, F., Chen, Z., & Campbell, A. T. (2017). Patterns of behavior change in students over an academic term: A preliminary study of activity and sociability behaviors using smartphone sensing methods. Computers in Human Behavior, 67, 129-138. https://doi.org/10.1016/j.chb.2016.10.027
    Hartson, R. (2003). Cognitive, physical, sensory, and functional affordances in interaction design. Behaviour & Information Technology, 22(5), 315-338. https://doi.org/10.1080/01449290310001592587
    Hoggan, E., Brewster, S. A., & Johnston, J. (2008). Investigating the effectiveness of tactile feedback for mobile touchscreens. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy. https://doi.org/10.1145/1357054.1357300
    Holz, C., & Baudisch, P. (2010). The generalized perceived input point model and how to double touch accuracy by extracting fingerprints. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, Georgia, USA. https://doi.org/10.1145/1753326.1753413
    Holzinger, A. (2003). Finger Instead of Mouse: Touch Screens as a Means of Enhancing Universal Access. Proceedings of the 7th ERCIM International Workshop on User Interfaces for All, Paris, France. https://doi.org/10.1007/3-540-36572-9_30
    Hsieh, M.-H., Ho, C.-H., & Lee, I. C. (2022). Effects of smartphone numeric keypad designs on performance and satisfaction of elderly users. International Journal of Industrial Ergonomics, 87, 103236. https://doi.org/https://doi.org/10.1016/j.ergon.2021.103236
    Huang, H., & Chen, L. H. (2010). Enhancing human-computer interaction and feedback in touchscreen icon. World Academy of Science, Engineering and Technology, 65, 428-433.
    Huang, K.-C., & Chiu, T.-L. (2007). Visual Search Performance on an LCD Monitor: Effects of Color Combination of Figure and Icon Background, Shape of Icon, and Line Width of Icon Border. Perceptual and Motor Skills, 104(2), 562-574. https://doi.org/10.2466/pms.104.2.562-574
    Hwangbo, H., Yoon, S. H., Jin, B. S., Han, Y. S., & Ji, Y. G. (2013). A Study of Pointing Performance of Elderly Users on Smartphones. International Journal of Human-Computer Interaction, 29(9), 604-618. https://doi.org/10.1080/10447318.2012.729996
    Im, Y., Kim, T., & Jung, E. S. (2015). Investigation of Icon Design and Touchable Area for Effective Smart Phone Controls. Human Factors and Ergonomics in Manufacturing & Service Industries, 25(2), 251-267. https://doi.org/10.1002/hfm.20593
    Jin, Z. X., Plocher, T., & Kiff, L. (2007). Touch Screen User Interfaces for Older Adults: Button Size and Spacing. Universal Acess in Human Computer Interaction. Coping with Diversity, Berlin, Heidelberg.
    Jung, E. S., & Im, Y. (2015). Touchable area: An empirical study on design approach considering perception size and touch input behavior. International Journal of Industrial Ergonomics, 49, 21-30. https://doi.org/10.1016/j.ergon.2015.05.008
    Jung, H., Wiltse, H., Wiberg, M., & Stolterman, E. (2017). Metaphors, materialities, and affordances: Hybrid morphologies in the design of interactive artifacts. Design Studies, 53, 24-46. https://doi.org/10.1016/j.destud.2017.06.004
    Jung, K., & Jang, J. (2015). Development of a two-step touch method for website navigation on smartphones. Applied Ergonomics, 48, 148-153. https://doi.org/10.1016/j.apergo.2014.11.006
    Kang, H., & Shin, G. (2014). Hand usage pattern and upper body discomfort of desktop touchscreen users. Ergonomics, 57(9), 1397-1404. https://doi.org/10.1080/00140139.2014.924574
    Keusch, F., Wenz, A., & Conrad, F. (2022). Do you have your smartphone with you? Behavioral barriers for measuring everyday activities with smartphone sensors. Computers in Human Behavior, 127, 107054. https://doi.org/10.1016/j.chb.2021.107054
    Kim, H., Kwon, S., Heo, J., Lee, H., & Chung, M. K. (2014). The effect of touch-key size on the usability of In-Vehicle Information Systems and driving safety during simulated driving. Applied Ergonomics, 45(3), 379-388. https://doi.org/10.1016/j.apergo.2013.05.006
    Kim, H., Yi, S., & Yoon, S.-Y. (2019). Exploring touch feedback display of virtual keyboards for reduced eye movements. Displays, 56, 38-48. https://doi.org/10.1016/j.displa.2018.11.004
    Kim, J. H., Aulck, L., Thamsuwan, O., Bartha, M. C., & Johnson, P. W. (2014). The Effect of Key Size of Touch Screen Virtual Keyboards on Productivity, Usability, and Typing Biomechanics. Human Factors, 56(7), 1235-1248. https://doi.org/10.1177/0018720814531784
    Kim, S., & Lee, S. (2020). Smash the dichotomy of Skeuomorphism and flat design: Designing an affordable interface to correspond with the human perceptuomotor process. International Journal of Human-Computer Studies, 141, 102435. https://doi.org/10.1016/j.ijhcs.2020.102435
    Kim, S., & Lee, S. (2023). Touchable pixels: Examining the affordance effect between an on-screen object and a user-elicited gesture on the touchscreen. Computers in Human Behavior, 140, 107588. https://doi.org/10.1016/j.chb.2022.107588
    Kwon, S., Lee, D., & Chung, M. K. (2009). Effect of key size and activation area on the performance of a regional error correction method in a touch-screen QWERTY keyboard. International Journal of Industrial Ergonomics, 39(5), 888-893. https://doi.org/10.1016/j.ergon.2009.02.013
    Lee, J.-H., Poliakoff, E., & Spence, C. (2009). The Effect of Multimodal Feedback Presented via a Touch Screen on the Performance of Older Adults. Proceedings of the 4th International Conference on Haptic and Audio Interaction Design, Dresden, Germany. https://doi.org/10.1007/978-3-642-04076-4_14
    Lee, S. C., Cha, M. C., & Ji, Y. G. (2019). Investigating Smartphone Touch Area with One-Handed Interaction: Effects of Target Distance and Direction on Touch Behaviors. International Journal of Human-Computer Interaction, 35(16), 1532-1543. https://doi.org/10.1080/10447318.2018.1554320
    Lin, H., Hsieh, Y.-C., & Wu, F.-G. (2016). A study on the relationships between different presentation modes of graphical icons and users’ attention. Computers in Human Behavior, 63, 218-228. https://doi.org/10.1016/j.chb.2016.05.008
    Lin, P.-H. (2015). Investigation of Chinese text entry performance for mobile display interfaces. Ergonomics, 58(1), 107-117. https://doi.org/10.1080/00140139.2014.961565
    Liu, N., & Yu, R. (2017). Identifying design feature factors critical to acceptance and usage behavior of smartphones. Computers in Human Behavior, 70, 131-142. https://doi.org/10.1016/j.chb.2016.12.073
    Lucaites, K., Fletcher, B., & Pyle, A. (2017). Measuring the Impact of Affordance-Based Clickability Cues. Proceedings of the ACM Conference, Washington, DC, USA.
    MacKenzie, I. S., & Soukoreff, R. W. (2002). Text entry for mobile computing: Models and methods, theory and practice. Human-Computer Interaction, 17(2-3), 147-198. https://doi.org/10.1207/S15327051hci172&3_2
    MacKenzie, I. S., & Zhang, S. X. (2001). An empirical investigation of the novice experience with soft keyboards. Behaviour & Information Technology, 20(6), 411-418. https://doi.org/10.1080/01449290110089561
    MacKenzie, I. S., Zhang, S. X., & Soukoreff, R. W. (1999). Text entry using soft keyboards. Behaviour & Information Technology, 18(4), 235-244. https://doi.org/10.1080/014492999118995
    Merbah, J., Gorce, P., & Jacquier-Bret, J. (2020). Interaction with a smartphone under different task and environmental conditions: Emergence of users’ postural strategies. International Journal of Industrial Ergonomics, 77, 102956. https://doi.org/10.1016/j.ergon.2020.102956
    Mu, D., Huang, Y., Wang, Y., Yang, J., Li, J., & Kang, Z. (2022). Neumorphic or flat? Impact of icon depth on user attention and visual search efficiency. International Journal of Industrial Ergonomics, 89, 103281. https://doi.org/10.1016/j.ergon.2022.103281
    Musić, J., & Murray-Smith, R. (2016). Nomadic Input on Mobile Devices: The Influence of Touch Input Technique and Walking Speed on Performance and Offset Modeling. Human–Computer Interaction, 31(5), 420-471. https://doi.org/10.1080/07370024.2015.1071195
    Nicolau, H., Guerreiro, T., Lucas, D., & Jorge, J. (2013). Mobile text-entry and visual demands: reusing and optimizing current solutions. Universal Access in the Information Society, 13(3), 291-301. https://doi.org/10.1007/s10209-013-0319-y
    Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic books.
    Orphanides, A. K., & Nam, C. S. (2017). Touchscreen interfaces in context: A systematic review of research into touchscreens across settings, populations, and implementations. Appl Ergon, 61, 116-143. https://doi.org/10.1016/j.apergo.2017.01.013
    Parhi, P., Karlson, A. K., & Bederson, B. B. (2006). Target size study for one-handed thumb use on small touchscreen devices. Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, Helsinki, Finland. https://doi.org/10.1145/1152215.1152260
    Park, Y., Heo, H., & Lee, K. (2015). Enhanced auditory feedback for Korean touch screen keyboards. International Journal of Human-Computer Studies, 73, 1-11. https://doi.org/10.1016/j.ijhcs.2014.08.002
    Park, Y. S., & Han, S. H. (2010a). One-handed thumb interaction of mobile devices from the input accuracy perspective. International Journal of Industrial Ergonomics, 40(6), 746-756. https://doi.org/10.1016/j.ergon.2010.08.001
    Park, Y. S., & Han, S. H. (2010b). Touch key design for one-handed thumb interaction with a mobile phone: Effects of touch key size and touch key location. International Journal of Industrial Ergonomics, 40(1), 68-76. https://doi.org/10.1016/j.ergon.2009.08.002
    Perry, K. B., & Hourcade, J. P. (2008). Evaluating one handed thumb tapping on mobile touchscreen devices Proceedings of Graphics Interface 2008, Windsor, Ontario, Canada.
    Pitts, M. J., Burnett, G., Skrypchuk, L., Wellings, T., Attridge, A., & Williams, M. A. (2012). Visual–haptic feedback interaction in automotive touchscreens. Displays, 33(1), 7-16. https://doi.org/10.1016/j.displa.2011.09.002
    Preece, J., Sharp, H., & Rogers, Y. (2015). Interaction design: beyond human-computer interaction. John Wiley & Sons.
    Reinhardt, D., & Hurtienne, J. (2024). Measuring Intuitive Use: Theoretical Foundations. International Journal of Human–Computer Interaction, 40(10), 2453-2483. https://doi.org/10.1080/10447318.2023.2166204
    Rouet, J.-F., Ros, C., Goumi, A., Macedo-Rouet, M., & Dinet, J. (2011). The influence of surface and deep cues on primary and secondary school students' assessment of relevance in Web menus. Learning and Instruction, 21(2), 205-219. https://doi.org/10.1016/j.learninstruc.2010.02.007
    Ryu, T., Lim, J., Song, J., Yun, M. H., & Shin, M. (2013). Performance comparison between the preferred right and preferred left hands in text entry using Qwerty touch keyboard smartphones. International Journal of Industrial Ergonomics, 43(5), 400-405. https://doi.org/10.1016/j.ergon.2013.07.001
    Sears, A. (1991). Improving touchscreen keyboards: design issues and a comparison with other devices. Interacting with Computers, 3(3), 253-269. https://doi.org/10.1016/0953-5438(91)90016-U
    Sears, A., Jacko, J. A., Chu, J., & Moro, F. (2001). The role of visual search in the design of effective soft keyboards. Behaviour & Information Technology, 20(3), 159-166. https://doi.org/10.1080/01449290110049790
    Seinfeld, S., Feuchtner, T., Maselli, A., & Müller, J. (2021). User Representations in Human-Computer Interaction. Human–Computer Interaction, 36(5-6), 400-438. https://doi.org/10.1080/07370024.2020.1724790
    Sheik-Nainar, M. (2010). Contact Location Offset to Improve Small Target Selection on Touchscreens. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(6), 610-614. https://doi.org/10.1177/154193121005400614
    Shin, G., & Zhu, X. (2011). User discomfort, work posture and muscle activity while using a touchscreen in a desktop PC setting. Ergonomics, 54(8), 733-744. https://doi.org/10.1080/00140139.2011.592604
    Shneiderman, B. (1991). Touch screens now offer compelling uses. IEEE Software, 8(2), 93-94. https://doi.org/10.1109/52.73754
    Siek, K. A., Rogers, Y., & Connelly, K. H. (2005). Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs. Proceedings of the 10th IFIP Conference on Human-Computer Interaction, Rome, Italy. https://doi.org/10.1007/11555261_24
    Still, J. D., Still, M. L., & Grgic, J. (2014). Designing Intuitive Interactions: Exploring Performance and Reflection Measures. Interacting with Computers, 27(3), 271-286. https://doi.org/10.1093/iwc/iwu046
    Sung, Y.-T., Wu, M.-D., Chen, C.-K., & Chang, K.-E. (2015). Examining the online reading behavior and performance of fifth-graders: evidence from eye-movement data. Frontiers in Psychology, 6(665). https://doi.org/10.3389/fpsyg.2015.00665
    Tao, D., Yuan, J., Liu, S., & Qu, X. (2018). Effects of button design characteristics on performance and perceptions of touchscreen use. International Journal of Industrial Ergonomics, 64, 59-68. https://doi.org/10.1016/j.ergon.2017.12.001
    Travis, C., & Murano, P. (2014). A comparative study of the usability of touch-based and mouse-based interaction. International Journal of Pervasive Computing and Communications, 10(1), 115-134. https://doi.org/10.1108/IJPCC-01-2014-0015
    Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1), 15-48. https://doi.org/10.1037/0033-295X.95.1.15
    Trudeau, M. B., Udtamadilok, T., Karlson, A. K., & Dennerlein, J. T. (2012). Thumb Motor Performance Varies by Movement Orientation, Direction, and Device Size During Single-Handed Mobile Phone Use. Human Factors, 54(1), 52-59. https://doi.org/10.1177/0018720811423660
    Trudeau, M. B., Young, J. G., Jindrich, D. L., & Dennerlein, J. T. (2012). Thumb motor performance varies with thumb and wrist posture during single-handed mobile phone use. Journal of Biomechanics, 45(14), 2349-2354. https://doi.org/10.1016/j.jbiomech.2012.07.012
    Turner, C. J., Chaparro, B. S., & He, J. (2016). Text Input on a Smartwatch QWERTY Keyboard: Tap vs. Trace. International Journal of Human-Computer Interaction, 33(2), 143-150. https://doi.org/10.1080/10447318.2016.1223265
    Wright, P., Bartram, C., Rogers, N., Emslie, H., Evans, J., Wilson, B., & Belt, S. (2000). Text entry on handheld computers by older users. Ergonomics, 43(6), 702-716. https://doi.org/10.1080/001401300404689
    Wu, M.-D., Chen, H.-J., & Hu, J.-F. (2020). Visual Features of the Touchscreen Keyboard Guide Attention and Text Entry Behavior: An Eye-Tracking Study. Proceedings of the 8th International Conference on Kansei Engineering and Emotion Research, Tokyo, Japan. https://doi.org/10.1007/978-981-15-7801-4_45
    Xiong, J., & Muraki, S. (2014). An ergonomics study of thumb movements on smartphone touch screen. Ergonomics, 57(6), 943-955. https://doi.org/10.1080/00140139.2014.904007
    Xiong, J., & Muraki, S. (2016). Effects of age, thumb length and screen size on thumb movement coverage on smartphone touchscreens. International Journal of Industrial Ergonomics, 53, 140-148. https://doi.org/10.1016/j.ergon.2015.11.004
    Xiong, L., Fu, C., & Deng, S. (2022). Area Design of Keyboard Layout for Comfortable Texting Ability with the Thumb Jacobian Matrix. International Journal of Human–Computer Interaction, 38(10), 973-982. https://doi.org/10.1080/10447318.2021.1976512
    Yi, X., Yu, C., Shi, W., & Shi, Y. (2017). Is it too small?: Investigating the performances and preferences of users when typing on tiny QWERTY keyboards. International Journal of Human-Computer Studies, 106, 44-62. https://doi.org/10.1016/j.ijhcs.2017.05.001
    Young, J. G., Trudeau, M., Odell, D., Marinelli, K., & Dennerlein, J. T. (2012). Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles. Work, 41(1), 81-91. https://doi.org/10.3233/wor-2012-1337
    Zhai, S., Hunter, M., & Smith, B. A. (2002). Performance Optimization of Virtual Keyboards. Human–Computer Interaction, 17(2-3), 229-269. https://doi.org/10.1080/07370024.2002.9667315

    無法下載圖示 校內:2030-08-08公開
    校外:2030-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE