簡易檢索 / 詳目顯示

研究生: 詹淑雅
Chan, Shu-Ya
論文名稱: 不等變異下t個最佳母體之選取程序
Selection procedure for the t best populations with unequal variances
指導教授: 溫敏杰
Wen, Miin-Jye
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 27
中文關鍵詞: 擇優選取兩階段抽樣方法子集合擇優法
外文關鍵詞: Selection, Two-sample procedure, Subset selection
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在母體為常態分配下,假設我們是以母體平均數大小為衡量母體好壞的準則,而母體變異數則有可能是已知或是未知的狀況。在母體變異數已知或未知但知比例關係的情況,已有不同研究提出方法來解決,因此本文章研究的是在母體變異數未知且可能不等之情況下,利用兩階段抽樣方法及子集合擇優法,完成從k個獨立常態母體中選取出最佳的t個之擇優選取程序。

    This paper gives a procedure for selecting the t best out of k normal populations with unknown and unequal variances. The method is based on a two-sample procedure which proposed by Stein (1945) and subset selection proposed by Gupta (1965). And, comparisons of simulations for setting different k, t, no are made.

    第一章 研究背景與動機 ....................................................................... .. 1 第二章 文獻回顧 ................................................................................... 3 第一節 文獻探討 ............................................................................... 3 第二節 DUDEWICZ & DALAL之擇優選取方法:選取最佳母體 ................. 5 第三章 研究方法 ................................................................................. 7 第一節 擇優選取 ............................................................................... 7 第二節 臨界值.................................................................................. 11 第四章 模擬 ...................................................................................... 13 第五章 實例分析 ................................................................................ 21 第六章 結論與討論 ............................................................................. 24 參考文獻 ........................................................................................... 25 附錄:R CODE................................................................................... 26

    Bechhofer, R. E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. The Annals of Mathematical Statistics, 25, 16-39.
    Bechhofer, R.E., Dunnett, C. W. & Sobel, M. (1954). A two-sample multiple decision procedure for ranking means of normal populations with a common unknown variance. Biometrika, 7, 170-176.
    Dudewicz, E. J. & Dalal, S. R. (1975). Allocation of observations in ranking and selection with unequal variances. The Annals of Mathematical Statistic, 37, 28-78. Gupta, S. S. (1965). On some multiple decision (Selection and Ranking) rules. Technometrics, 7, 225-245.
    Ofosu, J. B. (1973). A two-sample procedure for selecting the population with the largest mean from several normal populations with unknown variances. Biometrika, 8, 117-124.
    Stein, C. M. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. The Annals of Mathematical Statistics, 16, 243-258.
    Wen, M. J. (1991). Single-stage multiple comparison procedure under heteroscedasticity. Ph. D. dissertation, department of statistics, university of Georgia, Athens, GA. Chapter 4, 33-39.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE