| 研究生: |
詹智翔 Chan, Chih-Shong |
|---|---|
| 論文名稱: |
使用車載光達進行路面平整度偵測可行性研究 The Feasibility Study of Pavement Roughness Detecting By Mobile LiDAR |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 車載光達 、航帶平差 、精度提升 、路面平整度 |
| 外文關鍵詞: | Mobile LiDAR, Strip adjustment, Precision improvement, Pavement roughness |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國現行檢測路面平整度的方式為以人工方式操作三公尺直規或高低平坦儀進行測量,測量效率僅每小時0.8公里,相當耗時、費力且效率低落,不符合台灣地狹人稠、道路分佈密集的需求。車載光達近年來引進台灣,比較起傳統人工測量有著獲取道路資訊快速、道路點雲密度極高與無人為操作誤差等優點,效率可達每小時40公里,可取代傳統人工測量之不便。依據Optech Lynx車載光達系統規格書表示其車載光達本身即有8公厘之系統誤差。此誤差在進行道路平整度調查時是超過容許值的,需以資料後處理方式降低系統誤差至6公厘以下。本研究使用航帶平差,將車載光達測量車的兩個掃描頭點雲分別進行道路萃取、資料前處理與航帶平差,並檢視不同車速、轉彎與路段性質對其航帶平差造成的影響。結果顯示在車速低於60km/hr,轉彎角度低於40度的情形的一般道路可以將原始車載光達點雲以資料後處理方式降低一半的系統誤差,獲得可供道路平整度分析之路面高程值。
The current way of analyzing pavement roughness is manually operating the 3m-straight edge or the Hi-Lo detector. The efficiency of such measurement is only 0.8 kilometer per hour. It wastes lots of time and very laborious, does not meet the requirement of Taiwan’s situation: densely populated and intensive distribution of road. Mobile LiDAR has been introduced to Taiwan recently, comparing to traditional manual measurement, it has more advantages like accessing road information quickly, high accuracy data and without human operating error. The efficiency could reach 40 kilometers per hour that could replace traditional manual measurement completely. Based on the Optech Lynx mobile LiDAR system specifications, mobile LiDAR system has 8 mm system error. This error is unacceptable for the investigation of road roughness, need to be reduced to 6mm by data post-processing. In this study, we use two laser scanner’s point cloud data of mobile LiDAR system to process road extraction, data preprocessing and strip adjustment. Then testing the effection from different speed, turning angle and nature of pavement. The results shows when measuring vehicle’s speed is less than 60km/hr, turning angle is less than 40 degrees and driving on a generally flat road, strip adjustment will reduce systematic errors by half, could export the pavement data with enough precision for analyzing pavement roughness at Taiwan.
1. Barber, D., J. Mills & S. Smith-Voysey (2008). Geometric validation of a ground-based mobile laser scanning system. ISPRS journal of photogrammetry and remote sensing, 63(1), 128-141.
2. Burman, H. (2000). Adjustment of laser scanner data for correction of orientation errors. laser, 7, 5.
3. Casella, G., & R. L. Berger (1990). Statistical inference (Vol. 70): Duxbury Press Belmont, CA.
4. Crombaghs, M., R. Brügelmann & E. De Min (2000). On the adjustment of overlapping strips of laseraltimeter height data. International Archives of Photogrammetry and Remote Sensing, 33(B3/1), 230-237.
5. Gordon, S., D. Lichti & M. Stewart (2001). Application of a high-resolution, ground-based laser scanner for deformation measurements. Paper presented at the Proceedings of 10th International FIG Symposium on Deformation Measurements.
6. Gordon, S., D. D. Lichti, M. P. Stewart & M. Tsakiri (2000). Metric performance of a high-resolution laser scanner. Paper presented at the Photonics West 2001-Electronic Imaging.
7. GRAHAM, L. (2010). Mobile mapping systems overview. Photogrammetric engineering and remote sensing, 76(3), 222-228.
8. Haala, N., M. Peter, J. Kremer & G. Hunter (2008). Mobile LiDAR Mapping for 3D Point Cloud Collection in Urban Areas-a Performance Test. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1119-1127.
9. Hiremagalur, J., K. S. Yen, T. A. Lasky & B. Ravani (2009). Testing and performance evaluation of fixed terrestrial three-dimensional laser scanning systems for highway applications. Transportation Research Record: Journal of the Transportation Research Board, 2098(-1), 29-40.
10. Huising, E., & L. Gomes Pereira (1998). Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS Journal of photogrammetry and remote sensing, 53(5), 245-261.
11. Kilian, J., N. Haala & M. Englich (1996). Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, 31, 383-388.
12. Pesci, A., F. Loddo, G. Casula, F. Zampa, S. SINECO & G. Teza (2010). EXPERIENCE IN MOBILE LASER SCANNING BY MEANS OF LYNX SYSTEM IN L’AQUILA CITY. 04.03.09. Instruments and techniques Reports.
13. Schwarz, K., & N. El-Sheimy (2007). Digital mobile mapping systems–state-of-the-art and future trends. Advances in Mobile Mapping Technology, 3-18.
14. Toth, C., E. Paskaa & D. Brzezinska (2008). Using Road Pavement Markings as Ground Control for Lidar Data. Paper presented at the Proceedings of XXI ISPRS Congress.
15. Toth, C. K. (2009). R&D of mobile LIDAR mapping and future trends. Paper presented at the Proceeding of ASPRS 2009 Annual Conference (Baltimore, Maryland).
16. Wehr, A., & U. Lohr (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68-82.
17. Zampa, F., & D. Conforti (2009). Mapping with mobile lidar. GIM International, 23(4), 35-37.
18. 公路總局(2012)。 施工說明書(技術規定)。2013,取自 http://www.thb.gov.tw/TM/Files/Webpage/201209/28_eng_paper_04.rar
19. 尤瑞哲、蔡欣怡 (2005)。 空載雷射掃瞄測高資料區域平差模式之建立與可行性之研究。航測及遙測學刊, 10(1),頁 15-25。
20. 王莫昀(2008,2/15)。三年害死十六人 國賠六千餘萬 全台近9成道路坑人,中時電子報。
21. 交通部(2001)。公路工程施工規範。幼獅文化。
22. 行政院公共工程委員會(2003)。公共工程施工綱要規範暨相關成果。行政院公共工程委員會。
23. 李怡萱 (2004)。 市區道路平坦度檢測標準及其於養護排序模式整合之應用。國立台灣大學土木工程學研究所碩士班學位論文。
24. 周家蓓、李寧、李偲瑞 (2012)。 高低平坦儀之應用與驗證方法。鋪面工程, 10(2),頁 1-9。
25. 國道新建工程局工務組(2002)。施工技術規範。黃金博物園區。
26. 張孟孔(2009)。 鋪面平坦度檢測實務。2013,取自 http://duct.cpami.gov.tw/intro/Conference/11/M11-2.pdf
27. 溫建龍 (2005)。 維生管線孔蓋對道路平坦度影響之研究。國立中央大學土木工程學系碩士班學位論文。
28. 劉榮寬、徐偉城 (2008)。 空載光達於地理空間情報之應用。國防雜誌, 23(6),頁 49-60。