簡易檢索 / 詳目顯示

研究生: 王騏賢
Wang, Chi-Hsien
論文名稱: 探討Fas結合蛋白FAF1調控蛋白質泛素化降解與細胞凋亡之角色
To study the roles of Fas-associated factor 1 (FAF1) in ubiquitin-proteasome pathway and apoptosis
指導教授: 林鼎晏
Lin, Ding-Yen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 54
中文關鍵詞: FasFAF1細胞凋亡
外文關鍵詞: Fas, FAF1, apoptosis
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FAF1最早被報導可以和Fas receptor結合並促進Fas ligand誘導的細胞凋亡路徑,往後的研究文獻說明FAF1蛋白會調控許多的生理功能,包含了發育、神經細胞的存活與細胞的癌化,其中有不少的研究顯示FAF1蛋白扮演抑癌蛋白的角色透過調控細胞凋亡、NF-κB路徑與泛素化蛋白的穩定度。我們利用了yeast two-hybrid screen的方法找到了FAF1的結合蛋白Ubiquitin與Ubc9。這樣的發現也與近期的報導有一致性。我們進一步在人類纖維肉瘤細胞建立穩定表現FAF1的細胞株,並且如預期的發現FAF1確實會促進Fas ligand誘導的caspase活化與細胞凋亡,以及結合泛素化蛋白的功能。有趣的是我們利用免疫螢光染色技術發現大量表現FAF1蛋白和內生性的FAF1蛋白主要會座落於細胞核內,而細胞質則呈現較弱的訊號。此外,我們也發現FAF1與Gal4-DBD的融合蛋白會抑制Gal4-responsive reporter的轉錄活性,而NF-κB的轉錄活性也會受到FAF1的抑制。這些的結果推測FAF1促進Fas ligand誘導的細胞凋亡也許是透過調控細胞核內的基因轉錄,而這些基因涉及在Fas誘導的細胞凋亡與NF-κB存活路徑之中。

    Fas-associated factor 1 (FAF1) was originally identified as a interacting partner of Fas receptor that enhances apoptosis initiated through Fas antigen. Further studies have revealed that FAF1 functions in diverse biological processes, including normal development, neuronal cell survival and tumorigenesis. In particular, there are compelling evidences implicating FAF1 as a tumor suppressor involved in the modulation of apoptosis and NF-κB signaling, as well as in ubiquitin-mediated protein turnover. Using the yeast two-hybrid screen, we have isolated the ubiquitin and ubiquitin-conjugating enzyme Ubc9 as FAF1-interacting proteins. This finding is in agreement with the recently published data. We further established human fibrosarcoma HT1080 cell lines that exhibited stable expression of ectopic FAF1. Consistently, we demonstrated that ectopic expression of FAF1 enhances Fas-induced caspase activation and apoptosis, and binds to ubiquitinated substrates in vivo. Interestingly, we found that both ectopic and endogenous FAF1 was mainly localized to the nucleus with a faint cytoplasmic staining by immunofluorescence analysis. Moreover, we found that fusion of FAF1 to Gal4-DBD results in repression of transcription from Gal4-responsive reporter plasmids. Also, FAF1 can suppress NF-κB transcriptional activity. These findings suggest that FAF1 promotes sensitivity to Fas from a nuclear location, probably by regulating the transcription of genes involved in Fas-induced apoptosis and/or NF-κB survival pathway.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 V 縮寫指引 VI 第一章 緒論 1 第二章 實驗材料與方法 4 第三章 實驗結果 22 第四章 討論 28 第五章 參考文獻 31 附圖 36

    1.Muller, P. A., and Vousden, K. H. p53 mutations in cancer, Nat Cell Biol 15, 2-8 (2013).
    2.Chen, R. H., Lee, Y. R., and Yuan, W. C. The role of PML ubiquitination in human malignancies, J Biomed Sci 19, 81 (2012).
    3.Gurrieri, C., Capodieci, P., Bernardi, R., Scaglioni, P. P., Nafa, K., Rush, L. J., Verbel, D. A., Cordon-Cardo, C., and Pandolfi, P. P. Loss of the tumor suppressor PML in human cancers of multiple histologic origins, J Natl Cancer Inst 96, 269-279 (2004).
    4.Koken, M. H., Linares-Cruz, G., Quignon, F., Viron, A., Chelbi-Alix, M. K., Sobczak-Thepot, J., Juhlin, L., Degos, L., Calvo, F., and de The, H. The PML growth-suppressor has an altered expression in human oncogenesis, Oncogene 10, 1315-1324 (1995).
    5.Gurrieri, C., Nafa, K., Merghoub, T., Bernardi, R., Capodieci, P., Biondi, A., Nimer, S., Douer, D., Cordon-Cardo, C., Gallagher, R., and Pandolfi, P. P. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia, Blood 103, 2358-2362 (2004).
    6.Kakizuka, A., Miller, W. H., Jr., Umesono, K., Warrell, R. P., Jr., Frankel, S. R., Murty, V. V., Dmitrovsky, E., and Evans, R. M. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML, Cell 66, 663-674 (1991).
    7.de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR, Cell 66, 675-684 (1991).
    8.Chaudhuri, J. P., Karamanov, S., Paulraj, P., McGill, J. R., and Walther, J. Identification of parental chromosomes involved in translocations BCR-ABL, t(9;22) and PML-RARA, t(15;17), Anticancer Res 28, 3573-3578 (2008).
    9.Goddard, A. D., Borrow, J., Freemont, P. S., and Solomon, E. Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia, Science 254, 1371-1374 (1991).
    10.de The, H., Le Bras, M., and Lallemand-Breitenbach, V. The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies, J Cell Biol 198, 11-21 (2012).
    11.Jensen, K., Shiels, C., and Freemont, P. S. PML protein isoforms and the RBCC/TRIM motif, Oncogene 20, 7223-7233 (2001).
    12.Bernardi, R., and Pandolfi, P. P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies, Nat Rev Mol Cell Biol 8, 1006-1016 (2007).
    13.Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M., and Pandolfi, P. P. The mechanisms of PML-nuclear body formation, Mol Cell 24, 331-339 (2006).
    14.Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P. P., and Pelicci, P. G. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras, Nature 406, 207-210 (2000).
    15.Vernier, M., Bourdeau, V., Gaumont-Leclerc, M. F., Moiseeva, O., Begin, V., Saad, F., Mes-Masson, A. M., and Ferbeyre, G. Regulation of E2Fs and senescence by PML nuclear bodies, Genes Dev 25, 41-50 (2011).
    16.Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I., Hung, C. C., Suen, C. S., Hwang, M. J., Chang, K. S., Maul, G. G., and Shih, H. M. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors, Mol Cell 24, 341-354 (2006).
    17.Wang, Z. G., Delva, L., Gaboli, M., Rivi, R., Giorgio, M., Cordon-Cardo, C., Grosveld, F., and Pandolfi, P. P. Role of PML in cell growth and the retinoic acid pathway, Science 279, 1547-1551 (1998).
    18.Salomoni, P., and Pandolfi, P. P. The role of PML in tumor suppression, Cell 108, 165-170 (2002).
    19.Bernardi, R., Papa, A., and Pandolfi, P. P. Regulation of apoptosis by PML and the PML-NBs, Oncogene 27, 6299-6312 (2008).
    20.Salomoni, P., Ferguson, B. J., Wyllie, A. H., and Rich, T. New insights into the role of PML in tumour suppression, Cell Res 18, 622-640 (2008).
    21.Guo, A., Salomoni, P., Luo, J., Shih, A., Zhong, S., Gu, W., and Pandolfi, P. P. The function of PML in p53-dependent apoptosis, Nat Cell Biol 2, 730-736 (2000).
    22.Stanchina, E., Querido, E., Narita, M., Davuluri, R. V., Pandolfi, P. P., Ferbeyre, G., and Lowe, S. W. PML is a direct p53 target that modulates p53 effector functions, Mol Cell 13, 523-535 (2004).
    23.Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S. W. PML is induced by oncogenic ras and promotes premature senescence, Genes Dev 14, 2015-2027 (2000).
    24.Xu, Z. X., Zhao, R. X., Ding, T., Tran, T. T., Zhang, W., Pandolfi, P. P., and Chang, K. S. Promyelocytic leukemia protein 4 induces apoptosis by inhibition of survivin expression, J Biol Chem 279, 1838-1844 (2004).
    25.Wu, W. S., Xu, Z. X., Hittelman, W. N., Salomoni, P., Pandolfi, P. P., and Chang, K. S. Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-kappaB survival pathway, J Biol Chem 278, 12294-12304 (2003).
    26.Wang, Z. G., Ruggero, D., Ronchetti, S., Zhong, S., Gaboli, M., Rivi, R., and Pandolfi, P. P. PML is essential for multiple apoptotic pathways, Nat Genet 20, 266-272 (1998).
    27.Bischof, O., Kirsh, O., Pearson, M., Itahana, K., Pelicci, P. G., and Dejean, A. Deconstructing PML-induced premature senescence, EMBO J 21, 3358-3369 (2002).
    28.Bernardi, R., and Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death, Oncogene 22, 9048-9057 (2003).
    29.Torii, S., Egan, D. A., Evans, R. A., and Reed, J. C. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs), EMBO J 18, 6037-6049 (1999).
    30.Menges, C. W., Altomare, D. A., and Testa, J. R. FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis, Cell Cycle 8, 2528-2534 (2009).
    31.Chu, K., Niu, X., and Williams, L. T. A Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis, Proc Natl Acad Sci U S A 92, 11894-11898 (1995).
    32.Ryu, S. W., Lee, S. J., Park, M. Y., Jun, J. I., Jung, Y. K., and Kim, E. Fas-associated factor 1, FAF1, is a member of Fas death-inducing signaling complex, J Biol Chem 278, 24003-24010 (2003).
    33.Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J., and Kim, E. Fas-associated factor-1 inhibits nuclear factor-kappaB (NF-kappaB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-kappaB, J Biol Chem 279, 2544-2549 (2004).
    34.Park, M. Y., Moon, J. H., Lee, K. S., Choi, H. I., Chung, J., Hong, H. J., and Kim, E. FAF1 suppresses IkappaB kinase (IKK) activation by disrupting the IKK complex assembly, J Biol Chem 282, 27572-27577 (2007).
    35.Song, E. J., Yim, S. H., Kim, E., Kim, N. S., and Lee, K. J. Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway, Mol Cell Biol 25, 2511-2524 (2005).
    36.Zhang, L., Zhou, F., van Laar, T., Zhang, J., van Dam, H., and Ten Dijke, P. Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation, Mol Biol Cell 22, 1617-1624 (2011).
    37.Zhang, L., Zhou, F., Li, Y., Drabsch, Y., Zhang, J., van Dam, H., and ten Dijke, P. Fas-associated factor 1 is a scaffold protein that promotes beta-transducin repeat-containing protein (beta-TrCP)-mediated beta-catenin ubiquitination and degradation, J Biol Chem 287, 30701-30710 (2012).
    38.Ambrosini, G., Adida, C., and Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma, Nat Med 3, 917-921 (1997).
    39.Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honore, N., Doubeikovsky, A., Duprez, E., Pandolfi, P. P., Puvion, E., Freemont, P., and de The, H. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation, J Exp Med 193, 1361-1371 (2001).
    40.Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B., and de The, H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway, Nat Cell Biol 10, 547-555 (2008).
    41.Rabellino, A., Carter, B., Konstantinidou, G., Wu, S. Y., Rimessi, A., Byers, L. A., Heymach, J. V., Girard, L., Chiang, C. M., Teruya-Feldstein, J., and Scaglioni, P. P. The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA, Cancer Res 72, 2275-2284 (2012).
    42.Tatham, M. H., Geoffroy, M. C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E. G., Palvimo, J. J., and Hay, R. T. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation, Nat Cell Biol 10, 538-546 (2008).
    43.Scaglioni, P. P., Yung, T. M., Cai, L. F., Erdjument-Bromage, H., Kaufman, A. J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P. P. A CK2-dependent mechanism for degradation of the PML tumor suppressor, Cell 126, 269-283 (2006).
    44.Olsen, B. B., Jessen, V., Hojrup, P., Issinger, O. G., and Boldyreff, B. Protein kinase CK2 phosphorylates the Fas-associated factor FAF1 in vivo and influences its transport into the nucleus, FEBS Lett 546, 218-222 (2003).
    45.Guerra, B., Boldyreff, B., and Issinger, O. G. FAS-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction, Int J Oncol 19, 1117-1126 (2001).
    46.Jensen, H. H., Hjerrild, M., Guerra, B., Larsen, M. R., Hojrup, P., and Boldyreff, B. Phosphorylation of the Fas associated factor FAF1 by protein kinase CK2 and identification of serines 289 and 291 as the in vitro phosphorylation sites, Int J Biochem Cell Biol 33, 577-589 (2001).
    47.Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T., and Toriumi, W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain, J Biol Chem 274, 30353-30356 (1999).
    48.Yang, X., Khosravi-Far, R., Chang, H. Y., and Baltimore, D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis, Cell 89, 1067-1076 (1997).

    下載圖示 校內:2022-08-10公開
    校外:2022-08-10公開
    QR CODE