| 研究生: |
黃俊富 Huang, Jun-Fu |
|---|---|
| 論文名稱: |
硝糖火箭性能評價之研究 A Study of The performance Evaluation of The Rocket Candy |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 硝糖火箭 、固態火箭引擎 、燃燒速度 、推力測試 |
| 外文關鍵詞: | Candy rocket, Solid rocket motor , Burning rate, Thrust test |
| 相關次數: | 點閱:240 下載:122 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態火箭相較於液態、混合火箭,最大的不同就是開始燃燒後,無法 經由調節燃料或氧化劑的量,來控制推力,因此對於推進藥柱的製作過程, 及其燃燒特性都影響最終的推力表現。
本研究使用的推進劑係由山梨糖醇(Sorbitol)、硝酸鉀(Potassium nitrate)、三氧化二鐵粉(Ferric oxide powder)、鋁粉(Aluminum powder)所組 成,山梨糖醇為主燃料,經由加熱至熔點使其兼具黏著劑功能,硝酸鉀是 氧化劑,以及少量之金屬粉末做為催化劑,此類固態推進劑廣泛運用在較 低性能之火箭上。
本研究利用製作藥柱的方式製作藥條,先以基本山梨糖醇及硝酸鉀 為 主成分,製作出多組數且不同比例的藥條,於常壓下測定燃燒速率, 選出最 佳比例後,以同樣方式加入三氧化二鐵粉製作多組數藥條,測定 燃燒速率同 樣選出最佳比例,再加入不同比例鋁粉製作藥條,依前述方 式,進行燃燒速率的實驗,而圖中以時間與長度關係呈現。
除測定燃燒速率外,本研究會用最佳的成分比例製作藥柱,並安裝於 推進引擎進行推力測試,其中會使用不同口徑噴嘴的方式來改變燃燒室 壓力,並以時間與有效推力推算出總衝量(Total impulse)及比衝值(Isp)。
The major difference between solid rockets and liquid and hybrid rockets is that the thrust can't be controlled by adjusting the amount of fuel or oxidizer after ignited. Therefore, the manufacturing process of the propellant grains and its combustion properties affect the final performance of the thrust.
The propellant used in this study is composed of Sorbitol, Potassium nitrate, Ferric oxide powder, and Aluminum powder, with Sorbitol as the primary fuel, which is heated to the melting point for making it as an adhesive; Potassium nitrate as the oxidizer with small amount of metal powder is the catalyst. This solid propellant is widely applied in rockets with low performance.
In this study, we applied the method of making grain to produce the propellant strip with sorbitol and potassium nitrate as the main ingredients and to make a number of propellant strips with different ratios. The combustion rate was measured at atmospheric pressure to select the best proportion, and then a number of propellant strips were made by adding ferric oxide powder in the same way; the combustion rate was also measured to choose the best proportion, and a different proportion of aluminum powder was added to make propellant strips. The experiments of combustion rate were implemented as mentioned above, and the relationship between time and length was presented in the figure. In addition to the measurement of the burning rate, the propellant strips will be made with the best composition ratio and installed in the motor for thrust testing, which will employ different nozzle diameters to alter the chamber pressure and use the time and effective thrust to calculate the total impulse and the specific impulse (Isp).
[1] GEORGE P. SUTTON and OSCAR BIBLARZ, ROCKET PROPULSION ELEMENTS, John Wiley & Sons, Hoboken, New Jersey., 2017.
[2] Sciencemadness Wiki, Potassium nitrate <http://www.sciencemadness.org/smwiki/index.php/Potassium_nitrate> [accessed 02.07.22]
[3] Stuart Leslie and James Yawn, Proposal for the Inclusion of KNO3/Sugar Propellants to TRA, October 4, 2002.
[4] Richard Nakka’s Experimental Rocketry Web Site. <http://www.nakka-rocketry.net/> [accessed 01.07.22].
[5] Thada Suksila, Experimental investigation of solid rocket motors for small sounding rockets, Materials Science and Engineering 297 (2018) 012009.
[6] Iguniwei B. Paul *, Okunola M. Rhoda, Fatima Abubakar, Scanning Electron Microscopic Analysis of a Sucrose Composite Propellant, International Journal of Scientific Research in Chemistry November-December 3 (2018) 62-66.
[7] sjurvetson, Rocket propellant types, Science Blogs, May 21, 2019. <https://scienceblogs.com/photosynthesis/2009/05/22/rocket-propellant-types#google_vignette> [accessed 06.07.22].
[8] Pang W, Li Y, DeLuca LT, Liang D, Qin Z, Liu X, Xu H, Fan X. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review, Nanomaterials (Basel) 11 (2021) 2749.
[9] Stephen Ashworth, Catalyic metals and their uses, Royal Society of Chemistry, May 1, 2014 <https://edu.rsc.org/feature/catalytic-metals-and-their-uses/3007558.article> [accessed 19.08.22].
[10] 洪豐裕, 有機化學簡化, <https://www.nchu.edu.tw/~infochem/%A6%B3%BE%F7%AA%F7%C4%DD%A4%C6%BE%C7/%A6%B3%BE%F7%AA%F7%C4%DD%A4%C6%BE%C7.htm> [accessed 19.08.22].
[11] Hao Zhang, Binlin Dou, Jingjing Li, Longfei Zhao, Kai Wu, Thermogravimetric kinetics on catalytic combustion of bituminous coal, Journal of the Energy Institute, Volume 93, Issue 6, (2020) 2526-2535.
[12] F. Maggi, S. Dossi, C. Paravan, L. Galfetti, R. Rota, S. Cianfanelli, G. Marra, Iron oxide as solid propellant catalyst: A detailed characterization, Acta Astronautica 158 (2019) 416-424.
[13] Beverly Perry, We’ve Got (Rocket) Chemistry, Part 2, Rocketology: NASA’s Space Launch System, April 16, 2016 <https://blogs.nasa.gov/Rocketology/tag/aluminum/> [accessed 09.07.22].
[14] Rafaela Baldissear, Victor L. B. Khün, Francisco Telöken, Juliano Carteri, Matheus Poletto, Evaluation of use waste aluminum on the burning of soild rocket propellant, International Journal of Advanced Scientific and Technical Research, 6 (2019) 2249-9954.
[15] Siegfried Oeckl, Rocket propellant comprises an alkali metal nitrate, a polyol, aluminum powder and a burn moderator, DE12007003412A1, 2007. < https://patents.google.com/patent/DE102007003412A1/en > [accessed 01.07.22].
[16] Matt Venacchia, Strand burner for solid propellant testing, Material for MkDocs, 2019. <https://mvernacc.github.io/portfolio/project_pages/strand_burner/> [accessed 19.08.22].
[17] David Steeman, Ballistic Evaluation Motor test 2, Rocketry, steeman.be, Dec 23, 2010. <http://www.steeman.be/posts/Ballistic%20Evaluation%20Motor%20test%202/> [accessed 19.08.22].
[18] Chih-Yung Wu, Yi-Chu Chen, Tse-Hao Wang, Chang-I Lin, Chao-Wei Huang, Shi-Rong Zhou, Effect of Fe-based organic metal framework on the thermal decomposition of potassium nitrate and its application to the composite solid propellants, Combustion and Flame, Volume 232, (2021) 111556.
[19] Sidhant Singh, Rocket Motor for Experimental Sounding Rockets, Advances in Aerospace Science and Applications, 3 (2013), pp. 199-208.
[20] I Hossam, Review of challenges of the design of rocket motor case structures, Materials Science and Engineering, 610 (2019) 012019.
[21] O. Durif, Design of de Laval nozzles for gas-phase molecular studies in uniform supersonic flow, Physics of Fluids, 34 (2022) 013605.
[22] William J. Devenport, Nozzle Applet, Mar 01, 2001.
<https://www.engapplets.vt.edu/fluids/CDnozzle/cdinfo.html> [accessed 18.08.22].
[23] Wikipedia, Shock diamond, <https://en.wikipedia.org/wiki/Shock_diamond> [accessed 18.08.22].
[24] ADRIÁN OLIVARES RODRÍGUEZ, JAUME SOLÉ BOSQUET, STUDY AND IMPLEMENTATION OF A MIDDLE-SIZED ROCKET MOTOR BENCH TEST SYSTEM, September 30th, 2019.
[25] Wikipedia, Rocket candy, <https://en.wikipedia.org/wiki/Rocket_candy#cite_note-Jolley-4> [accessed 21.08.22].
[26] Apogeerocket, <https://www.apogeerockets.com/> [accessed 21.08.22].
[27] Wikipedia, Model rocket motor classification, <https://en.wikipedia.org/wiki/Model_rocket_motor_classification> [accessed 21.08.22].