| 研究生: |
蔡博堯 Tsai, Bo-Yao |
|---|---|
| 論文名稱: |
專家資訊不完整之群體決策模式 Group Decision-Making Models with Incomplete Information |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 群體決策 、區間型二模糊數 、模糊軟集合 、不完整資訊 、偏好關係 |
| 外文關鍵詞: | Group decision-making, Interval type-2 fuzzy sets, fuzzy Soft sets, Incomplete information, Preference relation |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資訊量的爆炸,面對問題時的決策變得困難。加上問題涵蓋範圍變得廣泛,專家的專業程度只能評估問題範圍中的一部分,給予的資訊也就無法處理整個問題,因此產生了不完整資訊下的決策問題。為了能夠解決問題的各個面向,所以採用群體決策方法找出與問題相關的各類專家處理問題。專家們來自不同領域,各專家在決策過程中選擇可以評估的屬性給予相關資訊以增加結果的正確性,並同時排除掉自身不熟悉的屬性,以確保結果不會造成嚴重偏差的情況。因此,本研究的目的在於能夠更合理地處理不完整問題,透過推論的方式萃取專家心中的隱藏資訊,提供問題更多的資訊,使得問題能較以往有效的被解決。
決策過程主要將不完整的資訊透過推論的方式補足,找出最有可能的遺漏資訊。決策流程共分為三大階段,第一階段為初始階段,確定所要面對的問題並進行探討;第二階段則是針對問題中的不完整的屬性權重評估值及方案評估值進行推論並補足,使得問題能消除不確定性;最後一階段為整合以及選擇階段,將各專家經過補足後的結果整合為群體結果,並從中找出最佳方案。
最後將本研究所構想出的決策模式透過現有例子進行驗證,結果與以往所得到的方案排序雖然不同,但方案間的優劣程度與過往學者得到的結果類似,因此能夠說明此研究模式具備一定的合理性,但使用本研究決策模式較能夠反映出各專家的想法。本研究的優點在於找出每個未提供完整資訊的專家,並找出這些專家的參考專家,將參考專家所提供的資訊作為未提供完整資訊的專家的依據,提供問題更多可能的資訊輔助決策,讓決策結果能夠更說服於人。決策過程中的整合方式也比之前文獻合理,能夠充分地考量各專家所提供的結果,而且不易受極端值影響。
Group decision making (GDM) is a typical way to make decision in many enterprises. Due to the complicated business environment, experts might not possess sufficient knowledge concerning the decision-making problem, so that they may not provide complete evaluation information for it. To overcome this problem, this study presents novel decision models to make up the missing information which expects couldn’t handle.
Decision models include three phases. Firstly, Experts evaluate the decision-making problem based on their knowledge. This study allows experts to only provide some assessments for those attributes they can evaluate. Therefore, there could be some missing information in the evaluation process. Then, the missing information is filled up by the proposed approached. Finally, the filled-up assessments from each expert are aggregated as the group assessments. Based on the group assessments, the best alternative can be selected.
An example is used to demonstrate the feasibility of decision models. Through the comparison, the results from this study are more reasonable than the existing approaches. Finally, the conclusion is drawn and some ideas are proposed for further exploration.
Abdullah, L., & Najib, L. (2014). A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. Expert Systems with Applications, 41(7), 3297-3305.
Alcantud, J. C. R. (2016). A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set. Information Fusion, 29, 142-148.
Alonso, S., Chiclana, F., Herrera, F., Herrera‐Viedma, E., Alcalá‐Fdez, J., & Porcel, C. (2008). A consistency‐based procedure to estimate missing pairwise preference values. International Journal of Intelligent Systems, 23(2), 155-175.
Alonso, S., Herrera-Viedma, E., Chiclana, F., & Herrera, F. (2009). Individual and social strategies to deal with ignorance situations in multi-person decision making. International Journal of Information Technology & Decision Making, 8(02), 313-333.
Celik, E., Gul, M., Aydin, N., Gumus, A. T., & Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329-341.
Celik, E., Gumus, A. T., & Alegoz, M. (2014). A trapezoidal type-2 fuzzy MCDM method to identify and evaluate critical success factors for humanitarian relief logistics management. Journal of Intelligent & Fuzzy Systems, 27(6), 2847-2855.
Chen, S.-M., & Lee, L.-W. (2010a). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Systems with Applications, 37(4), 2790-2798.
Chen, S.-M., & Lee, L.-W. (2010b). Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Systems with Applications, 37(1), 824-833.
Chen, S.-M., & Lee, L.-W. (2010c). Fuzzy multiple criteria hierarchical group decision-making based on interval type-2 fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 40(5), 1120-1128.
Chen, T.-Y. (2015a). An interval type-2 fuzzy technique for order preference by similarity to ideal solutions using a likelihood-based comparison approach for multiple criteria decision analysis. Computers & Industrial Engineering, 85, 57-72.
Chen, T.-Y. (2015b). Likelihoods of interval type-2 trapezoidal fuzzy preference relations and their application to multiple criteria decision analysis. Information Sciences, 295, 303-322.
Chen, T.-Y., Chang, C.-H., & Lu, J.-f. R. (2013). The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. European Journal of Operational Research, 226(3), 615-625.
Chiclana, F., Herrera-Viedma, E., & Alonso, S. (2009). A note on two methods for estimating missing pairwise preference values. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6), 1628-1633.
Chiclana, F., Herrera-Viedma, E., Alonso, S., & Herrera, F. (2008). A note on the estimation of missing pairwise preference values: a uninorm consistency based method. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(supp02), 19-32.
Chiclana, F., Mata, F., Martínez, L., Herrera-Viedma, E., & Alonso, S. (2008). Integration of a consistency control module within a consensus model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(supp01), 35-53.
Ching-Lai, H., & Yoon, K. (1981). Multiple attribute decision making: methods and applications: Springer-Verlag.
Delgado, M., Herrera, F., Herrera-Viedma, E., & Martínez, L. (1998). Combining numerical and linguistic information in group decision making. Information Sciences, 107(1), 177-194.
Dey, A., & Pal, M. (2015). Generalised multi-fuzzy soft set and its application in decision making. Pacific Science Review A: Natural Science and Engineering, 17(1), 23-28.
Dong, M., Li, S., & Zhang, H. (2015). Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP. Expert Systems with Applications, 42(21), 7846-7857.
Dopazo, E., & Ruiz-Tagle, M. (2011). A parametric GP model dealing with incomplete information for group decision-making. Applied Mathematics and Computation, 218(2), 514-519.
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.
Fedrizzi, M., & Giove, S. (2007). Incomplete pairwise comparison and consistency optimization. European Journal of Operational Research, 183(1), 303-313.
Feng, F., Jun, Y. B., Liu, X., & Li, L. (2010a). An adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics, 234(1), 10-20.
Feng, F., Li, Y., & Leoreanu-Fotea, V. (2010b). Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Computers & Mathematics with Applications, 60(6), 1756-1767.
Ghorabaee, M. K. (2016). Developing an MCDM method for robot selection with interval type-2 fuzzy sets. Robotics and Computer-Integrated Manufacturing, 37, 221-232.
Gong, Z.-W. (2008). Least-square method to priority of the fuzzy preference relations with incomplete information. International Journal of Approximate Reasoning, 47(2), 258-264.
Herrera-Viedma, E., Alonso, S., Chiclana, F., & Herrera, F. (2007). A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Transactions on Fuzzy Systems, 15(5), 863-877.
Hu, J., Zhang, Y., Chen, X., & Liu, Y. (2013). Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number. Knowledge-Based Systems, 43, 21-29.
Kahraman, C., Öztayşi, B., Sarı, İ. U., & Turanoğlu, E. (2014). Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48-57.
Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set. Information Sciences, 132(1), 195-220.
Kiliç, M., & Kaya, İ. (2015). Investment project evaluation by a decision making methodology based on type-2 fuzzy sets. Applied Soft Computing, 27, 399-410.
Kong, Z., Gao, L., & Wang, L. (2009). Comment on “A fuzzy soft set theoretic approach to decision making problems”. Journal of Computational and Applied Mathematics, 223(2), 540-542.
Kong, Z., Zhang, G., Wang, L., Wu, Z., Qi, S., & Wang, H. (2014). An efficient decision making approach in incomplete soft set. Applied Mathematical Modelling, 38(7), 2141-2150.
Maji, P., Biswas, R., & Roy, A. (2003). Soft set theory. Computers & Mathematics with Applications, 45(4), 555-562.
Maji, P., Roy, A. R., & Biswas, R. (2002). An application of soft sets in a decision making problem. Computers & Mathematics with Applications, 44(8), 1077-1083.
Maji, P. K., & Biswas, R. (2001). Fuzzy softs.
Majumdar, P., & Samanta, S. K. (2010). Generalised fuzzy soft sets. Computers & Mathematics with Applications, 59(4), 1425-1432.
Molodtsov, D. (1999). Soft set theory—first results. Computers & Mathematics with Applications, 37(4), 19-31.
Pedrycz, W., Skowron, A., & Kreinovich, V. (Eds.). (2008). Handbook of granular computing. John Wiley & Sons.
Qin, H., Ma, X., Herawan, T., & Zain, J. M. (2011). Data filling approach of soft sets under incomplete information. Paper presented at the Asian Conference on Intelligent Information and Database Systems.
Qin, J., Liu, X., & Pedrycz, W. (2015). An extended VIKOR method based on prospect theory for multiple attribute decision making under interval type-2 fuzzy environment. Knowledge-Based Systems, 86, 116-130.
Roy, A. R., & Maji, P. (2007). A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203(2), 412-418.
Sola, H. B., Fernandez, J., Hagras, H., Herrera, F., Pagola, M., & Barrenechea, E. (2015). Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: toward a wider view on their relationship. IEEE Transactions on Fuzzy Systems, 23(5), 1876-1882.
Tanino, T. (1984). Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems, 12(2), 117-131.
Ureña, R., Chiclana, F., Morente-Molinera, J. A., & Herrera-Viedma, E. (2015). Managing incomplete preference relations in decision making: a review and future trends. Information Sciences, 302, 14-32.
Wang, J.-C., & Chen, T.-Y. (2014). A closeness coefficient-based multiple criteria decision-making method using interval type-2 fuzzy sets and its application to watershed site selection. Journal of Industrial and Production Engineering, 31(1), 1-16.
Xiao, Z., Xia, S., Gong, K., & Li, D. (2012). The trapezoidal fuzzy soft set and its application in MCDM. Applied Mathematical Modelling, 36(12), 5844-5855.
Xu, Z. (2004). Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation. International Journal of Approximate Reasoning, 36(3), 261-270.
Xu, Z. (2005). A procedure for decision making based on incomplete fuzzy preference relation. Fuzzy Optimization and Decision Making, 4(3), 175-189.
Xu, Z. (2006). Incomplete linguistic preference relations and their fusion. Information Fusion, 7(3), 331-337.
Xu, Z., & Chen, J. (2008). Group decision-making procedure based on incomplete reciprocal relations. Soft Computing, 12(6), 515-521.
Xu, Z., & Da, Q. (2003). Possibility degree method for ranking interval numbers and its application. Journal of Systems Engineering, 18(1), 67-70.
Yang, X., Lin, T. Y., Yang, J., Li, Y., & Yu, D. (2009). Combination of interval-valued fuzzy set and soft set. Computers & Mathematics with Applications, 58(3), 521-527.
Yang, Y., Tan, X., & Meng, C. (2013). The multi-fuzzy soft set and its application in decision making. Applied Mathematical Modelling, 37(7), 4915-4923.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199-249.
Zhang, G., Dong, Y., & Xu, Y. (2012). Linear optimization modeling of consistency issues in group decision making based on fuzzy preference relations. Expert Systems with Applications, 39(3), 2415-2420.
Zhang, H. (2016). Group decision making based on incomplete multiplicative and fuzzy preference relations. Applied Soft Computing, 48, 735-744.
Zhang, Z., & Zhang, S. (2013). A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Applied Mathematical Modelling, 37(7), 4948-4971.
Zou, Y., & Xiao, Z. (2008). Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems, 21(8), 941-945.
校內:2020-06-30公開