簡易檢索 / 詳目顯示

研究生: 王智禾
Wang, Chih-Ho
論文名稱: 非金屬元素植佈於類鑽碳膜上之介電性質研究
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 介電性質離子植佈類鑽碳膜
外文關鍵詞: ion implant, diamond like carbon, dielectric
相關次數: 點閱:65下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   金屬線與材料層間的介電性質嚴重影響半導體元件的實際應用, 隨著元件尺寸的縮小,元件速度主要受限於訊號在金屬連線間的時間延遲,為了改善此問題,低介電材料的導入成為必要的選擇。類鑽碳膜 ( DLC ) 為一類似鑽石結構的非晶質碳膜,具有高硬度、低磨擦係數、抗化學腐蝕、高熱傳導性,高電阻及紅外線穿透等特性。因此,可以應用於機械、光電、半導體產業與電子元件等。

      DLC在光電方面亦具有優越的特性;例如DLC的介電常數約2.7~2.8之間 (SiO2 =4.0、 Si3N4=8、Si=11.9、鑽石=5.6),藉著化學氣相沉積製程中氯離子的加入 ( doping ) 而形成含氯的纇鑽碳膜 ( Cl-DLC ),其介電常數將可以調整至2.8,此低介電常數可以成為VLSI後段製程中的鈍化層。有鑑於此,本計畫將以PECVD方式沉積類鑽碳膜,再以離子植入方式將高劑量的非金屬離子 ( Ar、N 、C )植入表層,主要目的在探討非金屬離子對類鑽碳膜之結構及介電常數之影響。

      研究結果顯示,Ar、N元素的植入會使得類鑽碳膜有偏石墨化的現象,介電常數會比未植入前來的高;但C元素的植入可以使得介電常數有下降的趨勢,其原本類鑽碳膜的成分會有較多的SP3結構。

      The application of the semiconductor devices were seriously effected by the dielectric property between coating layers and the metal-conduct-line. Interconnect delay is a factor of performance limiting for ULSI circuits when feature size is scaled to deep sub-micron region. Using low dielectric constant materials for the interlayer insulator is an effective way to solve the RC time delay. Diamond-like carbon ( DLC ) film is an amorphous film with many properties such as high hardness, low friction coefficient , high thermal conductivity, high electric resistance and high infrared transparency, etc. Therefore, DLC can be applied to mechanics, optical industry and semi-conductor components.

      DLC have been the subject of research for the last two decades due to their important electrical and mechanical properties. Such as its dielectric constant is 2.7~3.8 ( SiO2 =4.0, Si3N4=8, Si=11.9, Diamond=5.6 ), by doping Cl ions to form the Cl-containing diamond like carbon ( CLDLC ) during the chemical vapor deposited process. The dielectric constant can be reduced to under 2.8. This low-k material can be used as the passive layer in the VSLI process. This study will deposit the DLC film by the PECVD method. And using the ion implanting with high dosage of ion ( Ar, N and C ) to modify the surface of the DLC film. The aim of this plan is to investigate the effects of those ions implantation on the structure and dielectric constant of the DLC film.

      The results reveal that the implanted with Ar or N leads to graphitization, and have higher dielectric constant. With C element implanted, the dielectric constant have been reduced and it have more SP3 structure.

    總目錄 摘要……………………………………………….………………….…….Ⅰ Abstract...………………………………………………………….…….…Ⅱ 致謝………………………………………………………………….……..Ⅲ 總目錄……………………………………………………………….……..Ⅳ 圖目錄…………………………………………………………….……..…Ⅵ 表目錄……………………………………………………………….……..Ⅷ 附圖目錄…………………………………………………………….……..Ⅸ 第一章 緒論……………………………………………....………….……1 1-1 前言…..………...…………………………………….……………1 1-2 介電材料及進程…………………………………………….…….4 1-3 研究動機與目的…………….………………………………….…7 第二章 理論基礎……………………………………….……………….8 2-1 離子植佈…………………………………………….…………….8 2-2 離子源種類及其發展…………………………….…….………...11 2-3 離子植佈原理………………………………………….………...18 2-4 介電特性…………………………………………………….…...21 2-5 介電量測……….…………………………………………….…..23 2-6 拉曼光譜儀………………………………………………………29 2-7 原子力顯微鏡…………………………………………….……...37 第三章 實驗方法與流程……………………………….…………...41 3-1 實驗流程…………………………………………….…………...41 3-2 實驗設備與材料…………………………………………………42 3-3 實驗步驟…………………………………………….…………...43 第四章 結果與討論…………………………………….…………….45 4-1 類鑽碳膜表面型態觀察….……………………………………...45 4-2 原子力顯微鏡分析鍍膜的表面粗糙度…………….…………...47 4-3 鍍層元素成分分析………………………………………………54 4-4 鍍層拉曼光譜分析……………………………………………....62 4-5 離子植佈後對介電常數之影響…………….…………………...68 第五章 結論…………………………………………….……………....75 參考文獻……………………………………...…………….……………77 附圖……………………………………………………………...81

    1. L. Peters, Semiconductor international, Sep. p64, (1998).

    2. R.D. Miller, Science 286, 422, (1999).

    3. C. Y. Chang, S.M. Sze, ULSI Technology, McGraw-Hill Companies, INC, (1996).

    4. M. Bohr, Proceedings of IEEE International Electronic Devices Meeting, (1995).

    5. S. Y. Oh. Et al., SRC Topic Research Conference Work shop on Low Dielectric Interlayer Dielectric for High Performance Circuits, RPI, NY, Aug. 9-10, (1994).

    6. T.S. Kuan, Dielectrics and CVD Metallization Symp., San Diego, CA, Feb. 7-8, (1994).

    7. A. Grill, V. Patel, B.S. Meyerson, in: Y. Yzeng, M. Yoshikawa, A. Feldman ( Eds.), Applications of Diamond Films and Related Materials, Elsevier, , 683, (1991).

    8. A.Erdemir, M. Switala, R. Wei, P. Wilbur, Surf. Coat. Technol.50, 17, (1991).

    9. E.I. Melets, A. Erdemir, G.R. Fenske, Surf. Coat. Technol.73, 39, (1995).

    10. J.E. Field, The Properties of Natural and Synthetic Diamond, Academic Press, New York, (1992).

    11. Krishna K M, Umeno M, et al. Appl Phys Lett, 77, 1472, (2000).

    12. Konofaos N, Evangelous E, Thomas CB. J Appl Phys, 84, 4634, (1998).

    13. Davanloo F, Collins CB, Koivusarri KJ, Leppaavuori S. Appl Phys Lett, 77, 1837, (2000).

    14. Kleps I, Angelescu A, et al. Solid-State Electron, 45, 1997, (2001).

    15. T. Usami, H. Ishikawa, and H. Gomi, Mater. Res. Soc. Symp. Proc. 476, 69 (1997)

    16. J. Theil, F. Mertz, M. Yairi, K. Seaward, and G. Ray, Mater. Res. Soc. Symp. Proc. 476, 31, (1997).

    17. K. Endo and T. Tatsumi, Appl. Phys. Lett. 68, 2864 (1996).

    18. B.D. Sartwell, in: R.F. Hochman (Ed.), Ion
    Plating and Implantation: Application to Materials, ASM, Materials Park, OH, 81-89, (1986).

    19. G.K. Hubler, F.A. Smidt, Nucl. Instrum. Meth. B7/8 , 151, (1985).

    20. J.K. Hivonen, B. Sartwell, Ion Implantation, ASM Handbook, Vol.5, Surface Engineering, , 605, (1994).

    21. 施敏,半導體元件物理與製作技術,高立出版社,民85,p501.

    22. 廖峻德、游惟翔,離子植入元素對輕金屬表面微結構之探討,p4.

    23. Aoki M, Kawarada H. Jpn J Appl Phys; 33:L708, (1994).

    24. Logothetidis S, Evangelou E, Konofaos N. J Appl Phys; 82:5017, (1997).

    25. Konofaos N, Evangelou EK, et al. Mater Sci Eng B; 91-92:379, (2002).

    26. Liu E, Shi X, et al. Solid-State Electron; 43:427,(1999).

    27. Xiang Cheng, Chao Chen, et al. Solid-State Elecctron; ; 48:285, (2004).

    28. 施敏,半導體元件物理與製作技術,高立出版社,民85,p230

    29. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126, (1970).

    30. S.A. Solin, Physica B, 99, 443, (1980).

    31. M.A. Capano, N.T. McDeutt, R.K. Singh and F.
    Qian, J. Vac. Sci.Technol. A, 14, 431, (1996).

    32. M.A. Tamor and W.C. Vassel, J. Appl. Phys., 76 (1994) 3923

    33. H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton and S.T. Mayer, J. Vac. Sci. Technol. A, 6 ,2307, (1998).

    34. J.Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, J. Appl. Phys., 80 ,440, (1996).

    35. R. Vuppuladium, H.E. Jackson and R.L.C., J. Appl.
    Phys., 77, 2714, (1995).

    36. Z.Y. Chen, J.P. Zhao, et al. J.Appl. Phys., 88, 2305, (2000).

    37. J.W. Zou, K. Reiethelt, K. Schmidt, B. Dischler, J. Appl. Phys. 65 (10) (1989).

    38. Y.Bounouh, L. Chahed, A. Sadki, Diamond Relat. Mater.4 , 492, (1995).

    39. J.Kaufman, S. Metin, and D.D. Saperstein, Phys. Rev. B39 ,13053 , (1989).

    40. J.K. Lee, M. Smallen, J. Enguero, H.J. Lee, A. Chao, The effect of chemical and surface properties of hydrogenated carbon overcoats on the tribological
    performance of rigid magnetic disks, IEEE Trans. Magn.29 (1) 276-281, (1993).

    41. J.Robertson,The deposition mechanism of diamond-like a-C and a-C:H,Diamond Relat. Mater.3 , 361-368, (1994).

    42. J.Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, J. Appl. Phys., 80 , 440, (1996).

    43. J.L. Jr, A. Saitoh, Y. Kurata, Thin Solid Films 337, 67-70, (1999).

    44. S.W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, H. Komiyama, J. Electrochem. Soc. 144, 2531, (1997).

    下載圖示 校內:2005-07-30公開
    校外:2005-07-30公開
    QR CODE