簡易檢索 / 詳目顯示

研究生: 郭心平
Kuo, Hsin-Ping
論文名稱: 熱電耦合的隱形分析研究
Coupling Thermal and Electric Fields Analysis of a Cloak
指導教授: 楊瑞珍
Yang, Ruey-Jen
共同指導教授: 楊煥成
Yeung, Woon-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 多物理場雙層理論熱電效應多變數優化逆向問題
外文關鍵詞: multi-physics, bilayer theory, thermoelectric effect, multivariable optimization, inverse problem
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多數熱隱形相關研究僅限於單一物理場的探討,雖然有少數對於多物理場隱形功能的研究,但在熱電隱形方面受限於純拉普拉斯形式的傅立葉定律以及歐姆定律,鮮少探討熱電效應的影響。本研究基於雙層理論中的雙層結構,應用多變數優化方法至熱電耦合的隱形問題之中,透過數值方法,計算出外層遮罩材料參數以設計熱電遮罩,可以適用於不同的背景材料條件,以及高電位的電場分布,同時也能應用至不同的幾何形狀,達成熱電耦合的隱形。本文透過對不同材料、不同邊界條件狀況以及三種幾何形狀進行熱電遮罩隱形效能的探討,結果指出在不同材料情況下會有不同的隱形效果;在幾何結構方面,旋轉角度也會影響隱形效能。總結來說,透過本文方法,可以適用熱電耦合的情況,在工程應用上也可透過優化的結果設計遮罩裝置,改善隱形效能。

    Most literature related to the cloak is limited to a single physical field. Although there are some studies on the invisible function of multi-physics, the thermoelectric cloak is limited by the Laplace form of Fourier's law and Ohm's law. Seldom discuss thermoelectric effect in a cloak. This study is based on bilayer theory, uses bilayer structure, and applies multivariable optimization methods to the cloak of thermal and electric field coupling.
    By the numerical method, calculate parameters of the outer layer to design thermal and electric cloak, which can be applied to different background conditions and high potential background, and can also be applied to different cloak geometry.
    In this paper, discuss the cloaking performance in different materials, different boundary conditions and three geometries. The results show that the cloaking performance will change with different materials. For geometrically anisotropic cloaks, different rotating angle has significant impact on cloaking performance.
    In conclusion, the method in this paper can be applied to the case of thermoelectric coupling. In engineering applications, use the optimized results to design cloaking devices, and to improve the cloaking performance.

    目錄 摘要 I 致謝 XIX 目錄 XX 表目錄 XXII 圖目錄 XXIII 符號說明 XXVIII 第 1 章 緒論1 1.1 簡介 1 1.2 隱形斗篷的起源 2 1.3 文獻回顧 3 1.3.1 熱學遮罩的發展 3 1.3.2 電遮罩的發展 12 1.3.3 熱電雙功能遮罩的發展 14 1.3.4 電子元件熱管理應用 17 1.4 研究動機與目的 19 第 2 章 理論分析 21 2.1 熱電效應(Thermoelectric effect)與焦耳熱(Joule heating) 21 2.2 熱電控制方程式 22 2.2.1 電場控制方程式 23 2.2.2 熱場控制方程式 23 2.3 成本函數及最佳化方法 24 第 3 章 模擬設置與程式架構 30 3.1 工具軟體介紹 30 3.1.1 COMSOL Multiphysics 30 3.1.2 MATLAB 31 3.2 遮罩模型及參數設置 31 3.3 MATLAB程式設計 35 第 4 章 結果與討論 39 4.1 圓形熱電遮罩 39 4.1.1以半導體材料為背景條件 39 4.1.2以金屬材料為背景條件 45 4.2 橢圓熱電遮罩 49 4.3 圓角方形熱電遮罩 56 第 5 章 結論與展望 64 5.1 結論 64 5.2 展望 65 參考文獻 66

    [1] Leonhardt, U., Optical conformal mapping. Science, 312(5781): p. 1777-1780,(2006).
    [2] Pendry, J.B.; Schurig, D.; Smith, D.R., Controlling electromagnetic fields. Science, 312(5781): p. 1780-1782,(2006).
    [3] Fan, C.; Gao, Y.; Huang, J., Shaped graded materials with an apparent negative thermal conductivity. Applied Physics Letters, 92(25): p. 251907,(2008).
    [4] Chen, T.; Weng, C.-N.; Chen, J.-S., Cloak for curvilinearly anisotropic media in conduction. Applied Physics Letters, 93(11): p. 114103,(2008).
    [5] Han, T.; Bai, X.; Gao, D.; Thong, J.T.; Li, B.; Qiu, C.-W., Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 112(5): p. 054302,(2014).
    [6] Guenneau, S.; Amra, C.; Veynante, D., Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express, 20(7): p. 8207-8218,(2012).
    [7] Schittny, R.; Kadic, M.; Guenneau, S.; Wegener, M., Experiments on transformation thermodynamics: molding the flow of heat. Physical Review Letters, 110(19): p. 195901,(2013).
    [8] Li, T.-H.; Zhu, D.-L.; Mao, F.-C.; Huang, M.; Yang, J.-J.; Li, S.-B., Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials. Frontiers of Physics, 11(5): p. 1-7,(2016).
    [9] Alekseev, G.; Levin, V. An optimization method for the problems of thermal cloaking of material bodies. Doklady Physics, 61(11): p. 546-550, (2016).
    [10] Alekseev, G.; Levin, V.; Tereshko, D. Optimization analysis of the thermal cloaking problem for a cylindrical body. in Doklady Physics, 62(2): p. 71-75, (2017).
    [11] Alekseev, G.V.; Tereshko, D.A., Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices. International Journal of Heat and Mass Transfer, 135: p. 1269-1277,(2019).
    [12] Yang, F.-Y.; Hung, F.-S.; Yeung, W.-S.; Yang, R.-J., Optimization method for practical design of planar arbitrary-geometry thermal cloaks using natural materials. Physical Review Applied, 15(2): p. 024010,(2021).
    [13] Yeung, W.-S.; Yang, R.-J., Introduction to Thermal Cloaking: Theory and Analysis in Conduction and Convection. Springer Nature Singapore,(2022).
    [14] Yang, F.; Mei, Z.L.; Jin, T.Y.; Cui, T.J., DC electric invisibility cloak. Physical Review Letters, 109(5): p. 053902,(2012).
    [15] Han, T.; Ye, H.; Luo, Y.; Yeo, S.P.; Teng, J.; Zhang, S.; Qiu, C.W., Manipulating DC currents with bilayer bulk natural materials. Advanced Materials. 26(21): p. 3478-3483,(2014).
    [16] 洪福穗, 多變數優化法用於熱對流隱形分析的研究. (2021).
    [17] Li, J.; Gao, Y.; Huang, J., A bifunctional cloak using transformation media. Journal of Applied Physics. 108(7): p. 074504,(2010).
    [18] Raza, M.; Liu, Y.; Ma, Y., A multi-cloak bifunctional device. Journal of Applied Physics. 117(2): p. 024502,(2015).
    [19] Feng, H.; Ni, Y., Bifunctions of invisible sensors and cloaks in thermal–electric fields. Journal of Applied Physics. 131(2): p. 025107,(2022).
    [20] Dede, E.M.; Schmalenberg, P.; Nomura, T.; Ishigaki, M., Design of anisotropic thermal conductivity in multilayer printed circuit boards. IEEE Transactions on Components, Packaging and Manufacturing Technology. 5(12): p. 1763-1774,(2015).
    [21] Dede, E.M.; Wang, C.-M.; Liu, Y.; Schmalenberg, P.; Zhou, F.; Shin, J.-W.; Ishigaki, M., Electrothermal Circuit Design With Heat Flow Control—Synchronous Buck Converter Case Study. IEEE Transactions on Components, Packaging and Manufacturing Technology. 8(2): p. 226-235,(2017).
    [22] Goldsmid, H.J., Introduction to thermoelectricity. Vol. 121. Springer,(2010).
    [23] Faraclas, A.; Bakan, G.; Dirisaglik, F.; Williams, N.E.; Gokirmak, A.; Silva, H., Modeling of thermoelectric effects in phase change memory cells. IEEE Transactions on Electron Devices. 61(2): p. 372-378,(2014).
    [24] 朱旭山, 熱電致冷晶片之特性與應用. 化工. 67(5), 10-18,(2020).
    [25] Landau, L.D.; Bell, J.; Kearsley, M.; Pitaevskii, L.; Lifshitz, E.; Sykes, J., Electrodynamics of continuous media. Vol. 8. Elsevier, (2013).
    [26] Lee, H., The Thomson effect and the ideal equation on thermoelectric coolers. Energy. 56: p. 61-69,(2013).
    [27] Antonova, E.E.; Looman, D.C. Finite elements for thermoelectric device analysis in ANSYS. 24th International Conference on Thermoelectrics, IEEE, (2005).
    [28] De, A.; DebRoy, T., Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization. Journal of Physics D: Applied Physics. 37(1): p. 140,(2003).

    下載圖示 校內:2024-08-29公開
    校外:2024-08-29公開
    QR CODE