簡易檢索 / 詳目顯示

研究生: 蔡淞貿
Song-MaoTsai,
論文名稱: 矩形樑附加多個共振器之振動分析
Vibration Analysis of Rectangular Beams with Multi-Resonators
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 56
中文關鍵詞: 波傳共振器帶隙
外文關鍵詞: Wave propagation, Resonator, Bandgap
相關次數: 點閱:216下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中呈現了一個新的樑連接著週期性的多個共振器。本文發現,當樑連接共振器時可有效的降低波的振幅,而當使用多個共振器時可以造成多個共振型的帶隙並可造成波顯著的衰減。在本篇論文中我們探討附有三種不同共振器的矩形樑的振動行為,分別為單一共振器,串聯共振器以及並聯共振器。經由改變共振器的質量以及彈簧常數,可以調整帶隙的範圍以及位置。另外,本文從Abaqus有限元素分析結果與實驗可以看出當外部頻率於帶隙內的時候,樑的振幅可以明顯的減少。本文也對理論分析,FEA結果,實驗結果進行比較。

    A new beam with periodically attached multi-resonators is presented. It is found that attached resonators may reduce wave amplitude effectively. It is also found that multiple resonators can lead to multiple resonant-type bandgaps with remarkable wave attenuation. Three types of unit cell are considered: a beam with one single resonator; a beam with resonators in parallel; and a beam with resonators in series. By changing the mass and spring constant, the range and location of the bandgap can be tailored.
    From the FEA and experimental results, it is seen that waves can be significantly reduced in a beam with resonators if the external frequency is within the bandgap. In addition, the experimental results have been compared with the theoretical analysis and FEA results.

    中文摘要 I Abstract II Acknowledgment III List of Figures VI List of Tables IX Nomenclature X CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Reviews 1 1.3 Chapter Outline 2 CHAPTER 2 THEORY 4 2.1 Hamilton’s principle 4 2.1.1 Strain Energy of the Timoshenko beam 4 2.1.2 Kinetic Energy of Timoshenko beam 6 2.2 Equation of Motion of Beam with Resonators 6 2.2.1 Equation of motion of the beam with single-resonator systems 7 2.2.2 Equation of motion of the cantilever beam with resonators in parallel 8 2.2.3 Equation of motion of the beam with resonators in series 10 CHAPTER 3 FINITE ELEMENT MODELING AND VIBRATION EXPERIMENTAL SETUP 13 3.1 Finite Element Modeling 13 3.1.1 Step of Creating the Beam Model 13 3.1.2 Cantilever Beam models with resonators in ABAQUS 14 3.1.3 Create the Sweep Frequency Data by using the Matlab Simulink 16 3.2 Vibration Experiment 19 3.2.1 Introduction of LabVIEW 24 CHAPTER 4 NUMERICAL AND EXPERIMENTAL RESULTS 27 4.1 Vibration analysis of the beam with single-resonator systems 27 4.2 Vibration analysis of beams with attached resonators in parallel/series 38 4.2.1 Beam with the resonators in parallel/series (Case 4) 38 4.2.2 Beam with the resonators in parallel/series (case 5) 46 CHAPTER 5 DISCUSSION AND CONCLUSIONS 54 References 55

    [1]J. S. Chen, B. Sharma, and C. T. Sun. (2011). “Dynamic behavior of sandwich structure containing spring-mass resonators”, Compos. Struct., 93, 2120-2125.
    [2]J.Ormondroyd, and J. P. Den Hartog. (1928). “The theory of dynamic vibration absorber”, ASME J. Appl. Mech., 49, A9-A22.
    [3]P. F. Pai. (2010). "Metamaterial-based broadband elastic wave absorber", J. Intell. Mater. Syst. Struct., 21(5), 517–528.
    [4]H. H. Huang, C. T. Sun, and G. L. Huang. (2009). “On the negative mass density in acoustic metamaterials”, Int. J. Eng. Sci., 47, 610-617.
    [5]H. H. Huang, and C.T. Sun. (2009). “Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density”, New J. Phys., 11, 013003.
    [6]J. M. Manimala, H. H. Huang, C. T. Sun, R. Snyder, and S. Bland. (2014). “Dynamic load mitigation using negative effective mass structures”, Eng. Struct., 80, 458-468.
    [7]J. M. Manimala, and C. T. Sun. (2014). “Microstructural design studies for locally dissipative acoustic metamaterials”, J. Appl. Phys., 115, 023518.
    [8]K. Mikoshiba, J. M. Manimala, and C. T. Sun. (2012). “Energy harvesting using an array of multifunctional resonators”, J. Intel. Mat. Syst. Str., 24(2), 168-179.
    [9]J.F. Doyle. (1989). “Wave Propagation in Structures”, Springer, New York.
    [10]Abaqus 6.12 Analysis User’s Manual Volume: Introduction, Spatial Modeling, Execution & Output.
    [11]The MathWorks Inc. (2014). Simulink User’s Guide.
    [12]LabVIEW User Manual, Part Number 320999E-01, 2003 Edition.
    [13]S. Yao, X. Zhou, and G. Hu. (2008). “Experimental study on negative effective mass in a 1D mass-spring system”, New J. Phys., 10, 043020.
    [14]K. T. Tan, H. H. Huang, and C. T. Sun. (2012). “Optimizing the band gap of effective mass negativity in acoustic metamaterials”, Appl. Phys. Lett., 101, 241902.
    [15]G. L. Huang, C. T. Sun. (2010). “Band Gaps in a Multiresonator Acoustic Metamaterial”, ASME J. Vib. Acoust., 132, 031003.
    [16]Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C.T. Chan, and P. Sheng. (2000). “Locally Resonant Sonic Materials”, Science, 289, 1734.

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE