| 研究生: |
陳柏屹 Chen, Po-Yi |
|---|---|
| 論文名稱: |
台灣當藥屬植物根部共生菌之多源基因體學研究 Metagenomics of Symbiotic Bacteria in Swertia Root of Taiwan |
| 指導教授: |
蔣鎮宇
Chiang, Tzen-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 多源基因體學 、根際 、根內 、當藥屬 、16S 核糖體RNA |
| 外文關鍵詞: | metagenomics, rhizosphere, root endosphere, Swertia, 16S ribosomal RNA |
| 相關次數: | 點閱:148 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球暖化越來越嚴重,生長在高山上的植物因為高山的孤立性質,使得植物無法自由離開山區,只能往更高海拔的區域移動。而面對加劇的極端氣候,高山植物勢必得改變自身的代謝功能以適應氣候變遷。目前已有高山木本植物與草本植物轉錄體的研究。然而並不是只有植物本身在面對氣候變遷,與植物有共生關係的根部共生微生物群除了受到植物宿主本身的調控外,也會受到如溫度、濕度等氣候的影響。但對於極端環境與氣候變遷如何影響高山草本植物根部共生微生物群仍是未解之謎。台灣有四種當藥屬(Swertia)植物,生長的區域橫跨中低至高海拔。其中生長在低海拔地區的新店當藥(Swertia shintenensis)是二年生植物(biennials),而生長在中高海拔地區的巒大當藥(Swertia macrosperma)、高山當藥(Swertia tozanensis)與阿里山當藥(Swertia arisanensis)皆為一年生植物(annuals)。本研究採集了當藥根際的土壤與當藥的根部作為實驗材料,並運用分子標籤與次世代定序解開當藥根際(rhizosphere)與根內(endosphere)共生微生物群的基因體資訊。研究發現根際與根內共生微生物群沒有隨著海拔變化的趨勢,但新店當藥的根際微生物群與其他三種當藥的根際微生物群有顯著差異。顯示了根際微生物組成可能有低海拔與中高海拔的差異,也可能與生命週期(life cycle)有所相關性。此外,新店當藥根內微生物的代謝功能也與其他當藥呈現顯著差異。根際土壤的酸鹼值可能會影響根際微生物的組成,其中對酸桿菌門的豐度影響最大。雖然巒大當藥與高山當藥是同域關係,但根際與根內微生物組成卻不是最相似的。顯示了台灣當藥屬植物根部微生物群與物種或環境複雜的交互作用。
Under the threats of global warming, alpine plants have to move to higher elevations and are thereby restricted by limited areas. Alpine plants must alter their metabolisms to face the climate change. Symbiotic bacteria in roots may help plants overcome such climate change. Nevertheless, the mutual influences between symbiotic root-associated bacteria and alpine plants under climate changes are still unknown. Four species of Swertia grow from low to high elevations in Taiwan, with S. shintenensis being biennial and growing in low elevations, and S. macrosperma, S. tozanensis, and S. arisanensis being annual and growing in higher elevations. In this study, rhizosphere soils and roots were collected, and 16S metagenomics was used to uncover the microbiome of rhizosphere and root endosphere. Although there was no significant trend of microbial change in the rhizosphere or endosphere along elevations, the microbiome in the rhizohsphere of S. shintenensis was significantly different from other Swertia species, showing that rhizosphere microbiome might be affected by altitudinal factors or life forms. In addition, microbial metabolisms in endosphere of S. shintenensis were different from those of others. On the other hand, soil pH values might affect the microbial compositions of the rhizosphere, as shown by the abundance of the Acidobacteria. Unexpectedly, sympatric S. macrosperma and S. tozanensis displayed different microbial compositions in rhizosphere and root endosphere.
參考書目
Amann, R., Ludwig, W., & Schleifer, K. (1995). Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without Cultivation. Microbiol Rev., 59(1), 143–169.
Büttner, D., Nennstiel, D., Klüsener, B., & Bonas, U. (2002). Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 184(9), 2389-2398.
Bacon, C. W., & Hinton, D. M. (2002). Endophytic and Biological Control Potential of Bacillus mojavensis and Related Species. Biological Control, 23(3), 274-284. doi:10.1006/bcon.2001.1016
Brahmachari, G., Mondal, S., Gangopadhyay, A., Gorai, D., Mukhopadhyay, B., Saha, S., & Brahmachari, A. K. (2004). Swertia (Gentianaceae): chemical and pharmacological aspects. Chemistry & biodiversity, 1(11), 1627-1651.
Brown, P. J., de Pedro, M. A., Kysela, D. T., Van der Henst, C., Kim, J., De Bolle, X., . . . Brun, Y. V. (2012). Polar growth in the Alphaproteobacterial order Rhizobiales. Proceedings of the National Academy of Sciences, 109(5), 1697-1701.
Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J., & Green, J. L. (2008). Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 105(Suppl 1), 11505-11511. doi:10.1073/pnas.0801920105
Chaintreuil, C., Giraud, E., Prin, Y., Lorquin, J., Bâ, A., Gillis, M., . . . Dreyfus, B. (2000). Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 66(12), 5437–5447. doi:10.1128/AEM.66.12.5437-5447.2000
Chen, K., & Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol, 1(2), 106-112. doi:10.1371/journal.pcbi.0010024
Cheng, W. X. (2009). Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology & Biochemistry, 41(9), 1795-1801. doi:10.1016/j.soilbio.2008.04.018
Compant, S., Kaplan, H., Sessitsch, A., Nowak, J., Ait Barka, E., & Clement, C. (2008). Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol, 63(1), 84-93. doi:10.1111/j.1574-6941.2007.00410.x
Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., . . . Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504-509. doi:10.1038/nature16461
Dedysh, S. N. (2011). Cultivating Uncultured Bacteria from Northern Wetlands: Knowledge Gained and Remaining Gaps. Frontiers in Microbiology, 2, 184. doi:10.3389/fmicb.2011.00184
Doornbos, R. F., van Loon, L. C., & Bakker, P. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32(1), 227-243. doi:10.1007/s13593-011-0028-y
Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., . . . Barrett, S. C. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One, 3(7), e2802.
Gade, D., Schlesner, H., Glockner, F. O., Amann, R., Pfeiffer, S., & Thomm, A. (2004). Identification of planctomycetes with order-, genus-, and strain-specific 16S rRNA-targeted probes. Microbial Ecology, 47(3), 243-251. doi:10.1007/s00248-003-1016-9
Hackstadt, A. J., & Hess, A. M. (2009). Filtering for increased power for microarray data analysis. BMC Bioinformatics, 10(11). doi:10.1186/1471-2105-10-11
Handelsmanl, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5(10), R245-R249. doi:10.1016/S1074-5521(98)90108-9
Herbold, C. W., Lee, C. K., McDonald, I. R., & Cary, S. C. (2014). Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature communications, 5, 3875.
Hodkinson, B. P., & Lutzoni, F. (2009). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49(3), 163-180.
Huang, C.-L., Jian, F.-Y., Huang, H.-J., Chang, W.-C., Wu, W.-L., Hwang, C.-C., . . . Chiang, T.-Y. (2014). Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes. Fungal Diversity, 66(1), 77.
Imhoff, J. F. (2005). Enterobacteriales. Bergey’s Manual® of Systematic Bacteriology, 587-850.
James, E. K., & Olivares, F. (1998). Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs. Critical Reviews in Plant Sciences, 17(1), 77-119. doi:10.1080/07352689891304195
Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 6(9), e24452.
Kane, S. R., Chakicherla, A. Y., Chain, P. S. G., Schmidt, R., Shin, M. W., Legler, T. C., . . . Hristova, K. R. (2007). Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1 (vol 189, pg 1931, 2007). Journal of Bacteriology, 189(13), 4973-4973. doi:10.1128/jb.00633-07
Kuske, C. R., Barns, S. M., & Busch, J. D. (1997). Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 63(9), 3614-3621.
Lee, B.-M., Park, Y.-J., Park, D.-S., Kang, H.-W., Kim, J.-G., Song, E.-S., . . . Go, S.-J. (2005). The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33(2), 577-586. doi:10.1093/nar/gki206
Liu, Z.-P., Wang, B.-J., Liu, Y.-H., & Liu, S.-J. (2005). Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1229-1232.
Mao, J., Luo, Y., Teng, Y., & Li, Z. (2012). Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. International Biodeterioration & Biodegradation, 70, 141-147.
Marschner, H., Romheld, V., Horst, W. J., & Martin, P. (1986). ROOT-INDUCED CHANGES IN THE RHIZOSPHERE - IMPORTANCE FOR THE MINERAL-NUTRITION OF PLANTS. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 149(4), 441-456. doi:10.1002/jpln.19861490408
Misaghi, I. J., & Donndelinger, C. R. (1990). Endophytic bacteria in symptom-free cotton plants. Phytopathology, 80(9), 808-811. doi:10.1094/Phyto-80-808
Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M., & Donadio, S. (2003). Conexibacter woesei gen. nov., sp nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. International Journal of Systematic and Evolutionary Microbiology, 53, 569-576. doi:10.1099/ijs.0.02400-0
Monteiro, R. A., Schmidt, M. A., Baura, V. A. d., Balsanelli, E., Wassem, R., Yates, M. G., . . . Souza, E. M. d. (2008). Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genetics and Molecular Biology, 31(4), 932-937.
Ortas, I. (1997). Determination of the extent of rhizosphere soil. Communications in Soil Science and Plant Analysis, 28(19-20), 1767-1776. doi:10.1080/00103629709369914
Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. Isme Journal, 9(4), 980-989. doi:10.1038/ismej.2014.196
Pearce, D. A., Newsham, K. K., Thorne, M. A. S., Calvo-Bado, L., Krsek, M., Laskaris, P., . . . Wellington, E. M. (2012). Metagenomic Analysis of a Southern Maritime Antarctic Soil. Frontiers in Microbiology, 3, 403. doi:10.3389/fmicb.2012.00403
Pukall, R., Lapidus, A., Del Rio, T. G., Copeland, A., Tice, H., Cheng, J. F., . . . Hugenholtz, P. (2010). Complete genome sequence of Conexibacter woesei type strain (ID131577(T)). Standards in Genomic Sciences, 2(2), 212-219. doi:10.4056/sigs.751339
Rüger, H.-J. (1983). Differentiation of Bacillus globisporus, Bacillus marinus comb. nov., Bacillus aminovorans, and Bacillus insolitus. International Journal of Systematic and Evolutionary Microbiology, 33(2), 157-161.
Savolainen, V., Cowan, R. S., Vogler, A. P., Roderick, G. K., & Lane, R. (2005). Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci, 360(1462), 1805-1811. doi:10.1098/rstb.2005.1730
Seki, T., Matsumoto, A., Shimada, R., Inahashi, Y., Omura, S., & Takahashi, Y. (2012). Conexibacter arvalis sp nov., isolated from a cultivated field soil sample. International Journal of Systematic and Evolutionary Microbiology, 62, 2400-2404. doi:10.1099/ijs.0.036095-0
Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B., & Kim, S.-J. (2004). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1483-1487.
Stover, C., Pham, X., Erwin, A., Mizoguchi, S., Warrener, P., Hickey, M., . . . Lagrou, M. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964.
Turnbaugh, P. J., & Gordon, J. I. (2008). An invitation to the marriage of metagenomics and metabolomics. Cell, 134(5), 708-713. doi:10.1016/j.cell.2008.08.025
Ullrich, M. (2009). Bacterial polysaccharides: current innovations and future trends: Horizon Scientific Press.
van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7, 142. doi:10.1186/1471-2164-7-142
van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J. M., Kartal, B., . . . Lücker, S. (2015). Complete nitrification by a single microorganism. Nature, 528(7583), 555-559. doi:10.1038/nature16459
Vaughan, E. E., Schut, F., Heilig, H. G. H. J., Zoetendal, E. G., Vos, W. M. d., & Akkermans1, A. D. L. (2000). A Molecular View of the Intestinal Ecosystem. Microbiol, 1(1), 1-12.
Wang, J., Meier, S., Soininen, J., Casamayor, E. O., Pan, F., Tang, X., . . . Shen, J. (2017). Regional and global elevational patterns of microbial species richness and evenness. Ecography, 40(3), 393-402. doi:10.1111/ecog.02216
Wang, J., Zhao, C., Liu, C., Xia, G., & Xiang, F. (2011). Introgression of Swertia mussotii gene into Bupleurum scorzonerifolium via somatic hybridization. BMC plant biology, 11(1), 71.
Wang, Y., & Qian, P.-Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, 4(10), e7401.
Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., . . . Kuske, C. R. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol, 75(7), 2046-2056. doi:10.1128/AEM.02294-08
Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B., & Schlosser, U. (1986). Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Archives of Microbiology, 144(1), 1-7. doi:10.1007/bf00454947
Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., Kim, J. N., Gore, J., . . . Breaker, R. R. (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Research, 35(14), 4809-4819. doi:10.1093/nar/gkm487
Woods, D. E., & Sokol, P. A. (2006). The genus Burkholderia The Prokaryotes (pp. 848-860): Springer.