簡易檢索 / 詳目顯示

研究生: 陳俞彣
Chen, Yu-Wen
論文名稱: 探討在T字形微流道中液滴的形成
Characterization of droplets formation in T-junction microfluidics
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 液滴微流體T字形流道擠壓流聚二甲基矽氧烷正十六烷
外文關鍵詞: droplet microfluidics, T-junction, squeezing flow, polydimethylsiloxane (PDMS), n-hexadecane
相關次數: 點閱:94下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液滴微流體系統已廣泛應用於各種生物技術,由於可以把單個細胞包覆在微米級的液滴中,並且將每個液滴視為一個獨立的微反應器,同時進行大量的實驗和分析,因此大幅提高了實驗的效率和準確度,此外,每個液滴內的物質不受其他液滴和外界的影響,可獨立地進行分析研究,也能夠有效地減少樣品和試劑的浪費,所以在生物技術的研究和應用中具有重要的地位,然而,液滴的生成正是在應用時至關重要的基礎關鍵。本研究設計不同尺寸的T形微流道並製成微流體晶片,以正十六烷為連續相、去離子水為分散相,藉由調控體積流率在微流道中形成液滴,進一步探討液滴形成機制為squeezing時(Cac<0.01),流道中液滴的長度變化。
    研究結果顯示,液滴長度與流率比的關係可表示為 L/W=β+α Qd/Qc。在同一個流道設計中,隨著體積流率比(Qd/Qc)的增加,液滴大小會增加,而流率值本身的不同會產生不同大小的液滴,當Qd/Qc<1時,不同Qd所產生的液滴大小較為相近。而在不同流道設計中, β值與w_in/w並沒有明確的關係,α值則根據Qd的大小有些不同,當Qd固定為0.04 ml/hr時,α值隨著w_in/w增加而增加,當Qd為0.1及0.5 ml/hr時,α值不隨w_in/w變化。另外,我們也進一步透過於液滴合併系統中加入界面活性劑的設計,達成液滴搜集的目標。

    Droplet microfluidic systems revolutionize biotechnology by encapsulating individual cells in micrometer-sized droplets, enabling high-throughput experiments and analysis with improved efficiency and reduced waste. For the droplet microfluidics, generation of the desired droplet size is crucial for its applications. In this study, we fabricated T-junction microchannels with different dimensions to study droplet formation in the squeezing flow regime (Cac<0.01). Hexadecane and DI water were used as the continuous phase and the dispersed phase, respectively and the volumetric flow rates were varied to investigate droplet formation and its length.
    The results showed that droplet length (L/W) relates to the flow rate ratio (Qd/Qc) as L/W = β + α Qd/Qc. Increasing Qd/Qc within the same channel design led to larger droplets. Different flow rates resulted in different droplet sizes, however, the droplet sizes were similar when Qd/Qc<1. It was also found that β was not related to channel dimensions, while α exhibited variations depending on Qd. α increased with win/w at Qd equal to 0.04 ml/hr but remained constant at Qd equal to 0.1 and 0.5 ml/hr. As to the proposed droplet merging system, the premature coalescence of the paired droplets downstream can be avoided by incorporating a branch channel filled with surfactants.

    口試委員會審定書 # 摘要 i Extended Abstract ii 致謝 ix 目錄 x 圖目錄 xii 表目錄 xviii 第1章 緒論 1 1.1 前言 1 1.2 研究動機 1 第2章 文獻回顧 3 2.1 液滴微流體介紹 3 2.2 產生液滴的方法與條件 5 2.3 液滴尺寸變化 8 2.4 微流體系統中液滴的控制 15 2.5 液滴微流體的應用 19 第3章 實驗材料與方法 24 3.1 實驗藥品與材料 24 3.1.1 黃光微影製程 24 3.1.2 液滴微流體實驗平台 25 3.2 實驗儀器與設備 26 3.2.1 黃光微影製程 26 3.2.2 液滴微流體實驗平台 28 3.3 實驗方法 32 3.3.1 微流道模具製備 32 3.3.2 液滴微流體系統 36 第4章 結果與討論 39 4.1 單邊T形流道 39 4.1.1 液滴的形成 39 4.1.2 液滴大小(L/w)與流率比(Qd/Qc)關係 62 4.1.3 支流流道寬(win)及分散相流率(Qd)的影響 69 4.2 液滴合併系統 73 第5章 總結 79 參考文獻 80 附錄A 83

    1. Teh, S.-Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
    2. Figeys, D. and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences. 2000, ACS Publications.
    3. Dressler, O.J., X. Casadevall i Solvas, and A.J. DeMello, Chemical and biological dynamics using droplet-based microfluidics. Annual Review of Analytical Chemistry, 2017. 10: p. 1-24.
    4. Li, X., D.R. Ballerini, and W. Shen, A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012. 6(1): p. 011301.
    5. Ding, X., et al., Surface acoustic wave microfluidics. Lab on a Chip, 2013. 13(18): p. 3626-3649.
    6. McNeely, M.R., et al. Hydrophobic microfluidics. in Microfluidic Devices and Systems II. 1999. SPIE.
    7. 林祐安, 探討利用微流體晶片中液滴合併方式包覆成對微粒, in 化學工程學系. 2021, 國立成功大學: 台南市. p. 88.
    8. Pattanayak, P., et al., Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 2021. 25(12): p. 99.
    9. Choban, E.R., et al., Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 2004. 128(1): p. 54-60.
    10. Sollier, E., et al., Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip, 2011. 11(22): p. 3752-3765.
    11. Thorsen, T., et al., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical review letters, 2001. 86(18): p. 4163.
    12. Zhu, P. and L. Wang, Passive and active droplet generation with microfluidics: a review. Lab on a Chip, 2017. 17(1): p. 34-75.
    13. Yao, C., et al., Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models. Chemical Engineering Science, 2021. 229.
    14. Garstecki, P., et al., Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip, 2006. 6(3): p. 437-46.
    15. Steegmans, M.L.J., C.G.P.H. Schroën, and R.M. Boom, Generalised insights in droplet formation at T-junctions through statistical analysis. Chemical Engineering Science, 2009. 64(13): p. 3042-3050.
    16. Husny, J. and J.J. Cooper-White, The effect of elasticity on drop creation in T-shaped microchannels. Journal of non-newtonian fluid mechanics, 2006. 137(1-3): p. 121-136.
    17. Christopher, G.F., et al., Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical review E, 2008. 78(3): p. 036317.
    18. Steegmans, M., C. Schroën, and R. Boom, Generalised insights in droplet formation at T-junctions through statistical analysis. Chemical Engineering Science, 2009. 64(13): p. 3042-3050.
    19. Fu, T., et al., Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical engineering science, 2012. 84: p. 207-217.
    20. Glawdel, T., C. Elbuken, and C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Physical Review E, 2012. 85(1): p. 016322.
    21. Glawdel, T., C. Elbuken, and C.L. Ren, Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling. Physical Review E, 2012. 85(1): p. 016323.
    22. De Menech, M., et al., Transition from squeezing to dripping in a microfluidic T-shaped junction. journal of fluid mechanics, 2008. 595: p. 141-161.
    23. Liu, H. and Y. Zhang, Droplet formation in a T-shaped microfluidic junction. Journal of applied physics, 2009. 106(3): p. 034906.
    24. Utada, A.S., et al., Dripping to jetting transitions in coflowing liquid streams. Physical review letters, 2007. 99(9): p. 094502.
    25. Castro-Hernandez, E., et al., Scaling the drop size in coflow experiments. New Journal of Physics, 2009. 11(7): p. 075021.
    26. Xu, J.H., et al., Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE Journal, 2006. 52(9): p. 3005-3010.
    27. van Steijn, V., C.R. Kleijn, and M.T. Kreutzer, Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. Lab Chip, 2010. 10(19): p. 2513-8.
    28. Bai, L., et al., Droplet formation in a microfluidic T-junction involving highly viscous fluid systems. Chemical Engineering Science, 2016. 145: p. 141-148.
    29. Tice, J.D., et al., Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir, 2003. 19(22): p. 9127-9133.
    30. Chokkalingam, V., et al., Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on a Chip, 2013. 13(24): p. 4740-4744.
    31. Eastburn, D.J., A. Sciambi, and A.R. Abate, Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Analytical chemistry, 2013. 85(16): p. 8016-8021.
    32. Fu, Y., et al., Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proceedings of the National Academy of Sciences, 2015. 112(38): p. 11923-11928.
    33. Mazutis, L. and A.D. Griffiths, Preparation of monodisperse emulsions by hydrodynamic size fractionation. Applied Physics Letters, 2009. 95(20): p. 204103.
    34. Yang, C.-G., R.-Y. Pan, and Z.-R. Xu, A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system. Chinese Chemical Letters, 2015. 26(12): p. 1450-1454.
    35. Jung, J.H., et al., On-demand droplet splitting using surface acoustic waves. Lab on a Chip, 2016. 16(17): p. 3235-3243.
    36. Song, H., J.D. Tice, and R.F. Ismagilov, A microfluidic system for controlling reaction networks in time. Angewandte Chemie, 2003. 115(7): p. 792-796.
    37. Matuła, K., F. Rivello, and W.T. Huck, Single‐cell analysis using droplet microfluidics. Advanced Biosystems, 2020. 4(1): p. 1900188.
    38. Lan, F., et al., Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nature biotechnology, 2017. 35(7): p. 640-646.
    39. Pellegrino, M., et al., High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome research, 2018. 28(9): p. 1345-1352.
    40. Wang, K., et al., Microdroplet coalescences at microchannel junctions with different collision angles. AIChE Journal, 2013. 59(2): p. 643-649.
    41. Bremond, N., A.R. Thiam, and J. Bibette, Decompressing emulsion droplets favors coalescence. Physical review letters, 2008. 100(2): p. 024501.
    42. Fidalgo, L.M., C. Abell, and W.T. Huck, Surface-induced droplet fusion in microfluidic devices. Lab on a Chip, 2007. 7(8): p. 984-986.
    43. Amirifar, L., et al., Droplet-based microfluidics in biomedical applications. Biofabrication, 2022. 14(2): p. 022001.
    44. Seo, M., et al., Continuous microfluidic reactors for polymer particles. Langmuir, 2005. 21(25): p. 11614-11622.
    45. Nightingale, A., et al., A stable droplet reactor for high temperature nanocrystal synthesis. Lab on a Chip, 2011. 11(7): p. 1221-1227.
    46. Faustini, M., et al., Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. Journal of the American Chemical Society, 2013. 135(39): p. 14619-14626.
    47. Lederberg, J., A simple method for isolating individual microbes. Journal of bacteriology, 1954. 68(2): p. 258-259.
    48. Zhu, Y. and Q. Fang, Analytical detection techniques for droplet microfluidics—A review. Analytica chimica acta, 2013. 787: p. 24-35.
    49. Abate, A.R., et al., Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip, 2009. 9(18): p. 2628-31.
    50. Macosko, E.Z., et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 2015. 161(5): p. 1202-1214.
    51. Klein, A.M., et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 2015. 161(5): p. 1187-1201.
    52. Zheng, G.X., et al., Massively parallel digital transcriptional profiling of single cells. Nature communications, 2017. 8(1): p. 14049.
    53. Glawdel, T., C. Elbuken, and C.L. Ren, Droplet Generation in Microfluidics, in Encyclopedia of Microfluidics and Nanofluidics. 2013. p. 1-12.
    54. WU, D. and V. HORNOF, Dynamic interfacial tension in hexadecane/water systems containing ready-made and in-situ-formed surfactants. Chemical Engineering Communications, 1999. 172(1): p. 85-106.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE