簡易檢索 / 詳目顯示

研究生: 李杰瑞
Jeffrey Levin
論文名稱: 重型車輛在側風情況下及安噴嘴式防止翻覆裝置的空氣動力模擬
Aerodynamic Simulations of a Heavy Vehicle in Crosswind with a Corner Nozzle as an Overturn Prevention Device
指導教授: 陳世雄
Chen, Shih-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 126
中文關鍵詞: 計算流體動力學側風傾覆卡車角噴嘴
外文關鍵詞: Computational Fluid Dynamics, crosswind, overturn, truck, corner nozzle
相關次數: 點閱:87下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 卡車傾覆很常見,因為卡車的重心比乘用車高,因此對來襲的側風更敏感。此前,研究人員研究了一種稱為角噴嘴 (CN) 的空氣動力學裝置,該裝置可以通過調整卡車後端的流動結構來有效降低卡車的阻力。本研究的目的是評估CN在引入側風時降低重型車輛側傾力矩係數 (CrGTS) 和側向力係數 (CsfGTS) 的性能。
    CN由薄的導氣板組成,並受轉角 (α) = 45o-90o。使用稱為地面運輸系統 (GTS) 的1/8比例簡化重型車輛模型作為基線模型,偏航角 (Ψ) = 0o-14o,雷諾數 (Re) 等於 1.6 x 106。力本研究使k-ω SST雷诺平均纳维-斯托克斯方程 (RANS) 方程。
    α = 90o處的CN具有最高的效率,並且對於所有 Ψ,CrGTS 和 CsfGTS 幅度降低約 6-8%。隨著 Ψ 的增加,CN表現更好。 CN降低了GTS迎風面和背風面的壓力。隨著 α 的增加,側面壓力的降低變得更加明顯,並影響 CrGTS 和 CsfGTS。證明CN可以降低CrGTS 和CsfGTS,從而提高卡車的側風穩定性。

    Overturning of a truck is common because the center of gravity of a truck is higher compared to a passenger car, making it more sensitive to an incoming crosswind. Previously, researchers investigated an aerodynamic device known as a corner nozzle (CN), which can effectively reduce a truck’s drag by adjusting the flow structure in the truck’s rear end. The purpose of this research is to assess the performance of the CN in reducing the rolling moment coefficient (CrGTS) and the side force coefficient (CsfGTS) of a heavy vehicle when a crosswind is introduced.
    The CN is comprised of thin air-guiding plates and governed by turning angle (α), which is varied from 45o-90o. A 1/8th scaled truck model named Ground Transportation System (GTS) is used as a baseline model at yaw angles (Ψ) = 0o-14o with Reynolds number (Re) equal to 1.6 x 106. The k-ω Shear Stress Transport (SST) Reynolds-averaged Navier-Stokes (RANS) equations are used to assess the performance of the CN.
    CN at α = 90o has the highest efficiency and offers reductions in CrGTS and CsfGTS magnitudes around 6-8% for all Ψ. The CN performs better as Ψ increases. The CN decreases the pressure on both windward and leeward surfaces of the GTS. As α increases, the decrease in pressure on side surfaces becomes more pronounced, and affecting the CrGTS and CsfGTS. It is demonstrated that the CN can reduce the CrGTS and CsfGTS, thereby improving the crosswind stability of the truck.

    ABSTRACT............................................................................................................................i ACKNOWLEDGEMENTS..................................................................................................iv TABLE OF CONTENTS........................................................................................................v LIST OF TABLES...............................................................................................................viii LIST OF FIGURES...............................................................................................................ix NOMENCLATURE............................................................................................................xiv. CHAPTER 1: INTRODUCTION...........................................................................................1 1.1. Research Background.............................................................................................1 1.2. Truck Classifications..............................................................................................3 1.3. Previous Conducted Research................................................................................4 1.3.1. Experimental Research...............................................................................4 1.3.2. Computational Research.............................................................................7 1.3.3. Aerodynamic Devices for Overturn Prevention........................................12 1.4. Vortex Identification Methods..............................................................................13 1.4.1. Q Method..................................................................................................13 1.4.2. λ2 Method..................................................................................................14 1.4.3. Ω Method..................................................................................................14 1.5. Research Scopes and Methodology.......................................................................14 1.6. Dissertation Chapters Preview..............................................................................16 CHAPTER 2: PROBLEM DESCRIPTION.........................................................................25 2.1. Rectangular Cylinder with 1:5 Aspect Ratio.........................................................25 2.2. GTS Geometry......................................................................................................26 2.3. CN Geometry........................................................................................................28 CHAPTER 3: NUMERICAL APPROACH..........................................................................34 3.1. Governing Equations............................................................................................34 3.1.1. RANS....................................................................................................... 35 3.1.2. k-ω SST Turbulence Model......................................................................36 3.1.3. Advanced Wall Function...........................................................................37 3.2. Discretization Technique......................................................................................38. 3.2.1. Discretization and Shape Functions..........................................................39 3.2.2. Solution Schemes..................................................................................... 41 3.2.3. Solution Strategy.......................................................................................43 CHAPTER 4: COMPUTATIONAL SETUP.........................................................................49 4.1. Computational Domain.........................................................................................49 4.1.1. Rectangular Cylinder with 1:5 Aspect Ratio.............................................49 4.1.2. GTS Truck................................................................................................ 49 4.2. Mesh Topology..................................................................................................... 50 4.2.1. Rectangular Cylinder with 1:5 Aspect Ratio.............................................50 4.2.2. GTS Truck................................................................................................ 51 4.3. Pre-simulation Setup.............................................................................................51 4.3.1. Physical Modeling....................................................................................52 4.3.2. Boundary Condition Modeling.................................................................53 4.3.3. Solver Control Modeling..........................................................................56. CHAPTER 5: RESULTS AND DISCUSSIONS..................................................................64 5.1. CFD Validations................................................................................................... 64 5.1.1. Rectangular Cylinder with 1:5 Aspect Ratio.............................................64 5.1.2. GTS Truck................................................................................................ 66 5.2. The Influence of Ψ on the BSL GTS......................................................................67 5.3. The Influence of Inlet Boundary Conditions on the BSL GTS..............................70 5.4. CN as a Drag Reduction Device............................................................................71 5.5. CN as an Overturn Prevention Device..................................................................73 5.5.1. Influence of α on Flow Structure...............................................................73 5.5.2. Influence of Ψ on Flow Structure..............................................................76 5.5.3. Efficiency..................................................................................................79 CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH..........................................114 6.1. Conclusions........................................................................................................ 114 6.2. Future Research..................................................................................................116 REFERENCES...................................................................................................................117 PUBLICATIONS................................................................................................................125

    REFERENCES

    [1] Bureau of Transportation Statistics, “Freight Facts and Figures 2017,” U.S. Department of Transportation, 2018, doi: https://doi.org/10.21949/1501488.
    [2] Bureau of Transportation Statistics, “Transportation Statistics Annual Report 2018,” U.S. Department of Transportation, 2019, doi: https://doi.org/10.21949/1502596.
    [3] Federal Motor Carrier Safety Administration Analysis Division, “Large Truck and Bus Crash Facts 2017,” U.S. Department of Transportation, 2019.
    [4] Okajima, A., “Strouhal Numbers of Rectangular Cylinder,” Journal of Fluid Mechanics 123:379-298, 1982, doi: https://doi.org/10.1017/S0022112082003115.
    [5] Lyn, D.A., and Rodi, W., “The Flapping Shear Layer Formed by Flow Separation from the Forward Corner of a Square Cylinder,” Journal of Fluid Mechanics 267:353-376, 1994, doi: https://doi.org/10.1017/S0022112094001217.
    [6] Nakamura, Y., Ohya, Y., and Tsuruta, H., “Experiments on Vortex Shedding from Flat Plates with Square Leading and Trailing Edges,” Journal of Fluid Mechanics 222:437-447, 1991, doi: https://doi.org/10.1017/S0022112091001167.
    [7] Choi, C.K., and Kwon, D.K., “Determination of The Strouhal Number Based on the Aerodynamic Behavior of Rectangular Cylinders,” Wind and Structures 3(3):209-220, 2000, doi: 10.12989/was.2000.3.3.209.
    [8] Schewe, G., “Reynolds-Number-Effects in Flow around a Rectangular Cylinder with Aspect Ratio 1:5,” Journal of Fluids and Structures 39:15-26, 2013, doi: https://doi.org/10.1016/j.jfluidstructs.2013.02.013.
    [9] Rodi, W., “Comparison of LES and RANS Calculations of the Flow around Bluff Bodies,” Journal of Wind Engineering and Industrial Aerodynamics 69-71:55-75, 1997, doi: https://doi.org/10.1016/S0167-6105(97)00147-5.
    [10] Sohankar, A., Norberg, C., and Davidson, L., “Simulation of Three-Dimensional Flow around a Square Cylinder at Moderate Reynolds Numbers,” Physics of Fluids 11(2):288-306, 1999, doi: https://doi.org/10.1063/1.869879.
    [11] Almeida, O., Mansur, S.S., and Silveira-Neto, A., “On the Flow Past Rectangular Cylinders: Physical Aspects and Numerical Simulation,” Thermal Engineering 7(1):55-64, 2008, doi: http://dx.doi.org/10.5380/reterm.v7i1.61743.
    [12] Mannini, C., Soda, A., and Schewe, G., “Unsteady RANS Modelling of Flow Past a Rectangular Cylinder: Investigation of Reynolds Number Effects,” Computers & Fluids 39:1609-1624, 2010, doi: https://doi.org/10.1016/j.compfluid.2010.05.014.
    [13] Buckley, F.T., Marks, C.H., and Walston, W.H., “A Study of Aerodynamic Methods for Improving Truck Fuel Economy,” University of Maryland, 1978.
    [14] Cooper, K.R., “The Wind Tunnel Testing of Heavy Trucks to Reduce Fuel Consumption,” SAE Technical Paper, 1982, doi: https://doi.org/10.4271/821285.
    [15] Croll, R.H., Gutierrez, W.T., Hassan, B., Suazo, J.E., et al., “Experimental Investigation of the Ground Transportation Systems (GTS) Project for Heavy Vehicle Drag Reduction,” SAE Technical Paper, 1996, doi: https://doi.org/10.4271/960907.
    [16] Gutierrez, W.T., Hassan, B., Croll, R.H., and Rutledge, W.H., “Aerodynamics Overview of the Ground Transportation Systems (GTS) Project for Heavy Vehicle Drag Reduction,” SAE Technical Paper, 1996, doi: https://doi.org/10.4271/960906.
    [17] Storms, B.L., Ross, J.C., Heineck, J.T., Walker, S.M., et al., “An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7-by 10-Ft Wind Tunnel,” NASA/TM-2001-209621, 2001.
    [18] Storms, B.L., Satran, D.R., Heineck, J.T., and Walker, S.M., “A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7-by 10-Foot and 12-Foot Wind Tunnels,” NASA/TM-2006-213489, 2006.
    [19] Baker, C.J., “A Simplified Analysis of Various Types of Wind-Induced Road Vehicle Accidents,” Journal of Wind Engineering and Industrial Aerodynamics 22(1):69-85, 1986, doi: https://doi.org/10.1016/0167-6105(86)90012-7.
    [20] Baker, C.J., “High Sided Articulated Road Vehicles in Strong Cross Winds,” Journal of Wind Engineering and Industrial Aerodynamics 31:67-85, 1988, doi: https://doi.org/10.1016/0167-6105(88)90188-2.
    [21] Coleman, S.A., and Baker, C.J., “High Sided Road Vehicles in Cross Winds,” Journal of Wind Engineering and Industrial Aerodynamics 36(2):1383-1392, 1990, doi: https://doi.org/10.1016/0167-6105(90)90134-X.
    [22] Coleman, S.A., and Baker, C.J., “An Experimental Study of the Aerodynamic Behaviour of High Sided Lorries in Cross Winds,” Journal of Wind Engineering and Industrial Aerodynamics 53(3):401-429, 1994, doi: https://doi.org/10.1016/0167-6105(94)90093-0.
    [23] Baker, C.J., and Humphreys, N.D., “Assessment of the Adequacy of Various Wind Tunnel Techniques to Obtain Aerodynamic Data for Ground Vehicles in Cross Winds,” Journal of Wind Engineering and Industrial Aerodynamic 60:49-68, 1996, doi: https://doi.org/10.1016/0167-6105(96)00023-2.
    [24] Humphreys, N.D., and Baker, C.J., “Forces on Vehicles in Cross Winds from Moving Model Tests,” Journal of Wind Engineering and Industrial Aerodynamics 44(1-3):2673-2684, 1992, doi: https://doi.org/10.1016/0167-6105(92)90059-J.
    [25] Petzall, J., Torlund, P.A., Falkmer, T., Albertsson, P., et al., “Aerodynamic Design of High-sided Coaches to Wind Sensitivity, Based on Wind Tunnel Tests,” International Journal of Crashworthiness 13(2):185-194, 2008, doi: 10.1080/13588260701788476.
    [26] Gohlke, M., Beaudoin, J.F., Amielh, M., and Anselemt, F., “Shape Influence on Mean Forces Applied on a Ground Vehicle under Steady Cross-wind,” Journal of Wind Engineering and Industrial Aerodynamics 98(8-9):386-391, doi: https://doi.org/10.1016/j.jweia.2009.12.003.
    [27] Passmore, M.A., Richardson, S., and Imam, A., “An Experimental Study of Unsteady Vehicle Aerodynamics,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 215(7):779-788, 2001, doi: https://doi.org/10.1243/0954407011528365.
    [28] Han, T., “Computational Analysis of Three-Dimensional Turbulent Flow Around a Bluff Body in Ground Proximity,” AIAA Journal 27(9):1213-1219, 1989, doi: https://doi.org/10.2514/3.10248.
    [29] Khondge, A.D., Sovani, S.D., Lokhande, B.S., Jain, S.K., et al., “Simulation of the Flow-Field around a Generic Tractor-Trailer Truck,” SAE Technical Paper, 2004, doi: https://doi.org/10.4271/2004-01-1147.
    [30] Krajnovic, S., and Davidson, L., “Numerical Study of the Flow around a Bus-Shaped Body,” Journal of Fluids Engineering 125(3):500-509, 2003, doi: https://doi.org/10.1115/1.1567305.
    [31] Tsubokura, M., Nakashima, T., Oshima, N., Kitoh, K, et al., “Current Status on High Performance Computing for Vehicle Aerodynamics using Large Eddy Simulation,” presented at FEDSM 2007: Proceedings of the 5th Joint ASME/JSME Fluids Engineering, USA, 30 July – 2 August, 2007, doi: 10.1115/FEDSM2007-37456.
    [32] Salari, K., Ortega, J.M., and Castellucci, P.J., “Computational Prediction of Aerodynamic Forces for a Simplified Integrated Tractor-Trailer Geometry,” presented at 34th AIAA Fluid Dynamics Conference and Exhibit, USA, 28 June – 1 July, 2004, doi: https://doi.org/10.2514/6.2004-2253.
    [33] Roy, C.J., Payne, J., and McWherter-Payne, M., “RANS Simulations of a Simplified Tractor/Trailer Geometry,” Journal of Fluids Engineering 128(5):1083-1089, 2006, doi: https://doi.org/10.1115/1.2236133.
    [34] Maddox, S., Squires, K.D., Wurtzler, K.E., and Forsythe, J.R., “Detached-Eddy Simulation of the Ground Transportation System,” The Aerodynamic of Heavy Vehicles: Trucks, Buses, and Trains, Lecture Notes in Applied and Computational Mechanics 19:89-104, 2004, doi: https://doi.org/10.1007/978-3-540-44419-0_8.
    [35] Hassaan, M., Badlani, D., and Nazarinia, M., “On the Effect of Boat-Tails on a Simplified Heavy Vehicle Geometry under Crosswinds,” Journal of Wind Engineering & Industrial Aerodynamics 183:172-186, 2018, doi: 10.1016/j.jweia.2018.10.013.
    [36] Pointer, D., Sofu, T., Chang, J., and Weber, D., “Applicability of Commercial CFD Tools for Assessment of Heavy Vehicle Aerodynamic Characteristics,” The Aerodynamic of Heavy Vehicles II: Trucks, Buses, and Trains, Lecture Notes in Applied and Computational Mechanics 41:349-361, 2009, doi: https://doi.org/10.1007/978-3-540-85070-0_33.
    [37] Tsubokura, M., Nakashima, T., Kitayama, M., Ikawa, Y., et al., “Large Eddy Simulation on the Unsteady Aerodynamic Response of a Road Vehicle in Transient Crosswinds,” International Journal of Heat and Fluid Flow 31(6):1075-1086, 2010, doi: https://doi.org/10.1016/j.ijheatfluidflow.2010.05.008
    [38] Hargreaves, D., and Morvan, H., “Initial Validation of Cross Wind Effects on a Static High-Sided Vehicle,” International Journal of CFD Case Studies 7:17-31, 2008.
    [39] Sterling, M., Quinn, A.D., Hargreaves, D.M., Cheli, F., et al., “A Comparison of Different Methods to Evaluate Wind Induced Forces on a High Sided Lorry,” Journal of Wind Engineering and Industrial Aerodynamics 98(1):10-20, 2010, doi: https://doi.org/10.1016/j.jweia.2009.08.008.
    [40] Krajnovic, S., Ringqvist, P., and Basara, B., “Comparison of Partially Averaged Navier-Stokes and Large-Eddy Simulations of the Flow around a Cuboid Influenced by Crosswind,” Journal of Fluids Engineering 134(10):101202-1-101202-10, 2012, doi: https://doi.org/10.1115/1.4007363.
    [41] Hussain, K., Rahnejat, H., and Hegazy, S., “Transient Vehicle Handling Analysis with Aerodynamic Interactions,” Proceedings of the Institution of Mechanical Engineers Part K: Journal of Multi-Body Dynamics 221(1):21-32, 2007, doi: 10.1243/1464419JMBD41.
    [42] William, Y., Oraby, W., and Metwally, S., “Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts,” SAE International Journal of Commercial Vehicles 7(2):666-674, doi: https://doi.org/10.4271/2014-01-2449.
    [43] Zhang, Z., Li, J., and Guo, W., “Combined Simulation of Heavy Truck Stability under Sudden and Discontinuous Direction Change of Crosswind with Computational Fluid Dynamics and Multi-Body System Vehicle Dynamics Software,” Advances in Mechanical Engineering 10(7):1-10, 2018, doi: 10.1177/1687814018786364.
    [44] Baker, C., Cheli, F., Orellano, A., Paradot, N., et al., “Cross-wind Effects on Road and Rail Vehicles,” Vehicle System Dynamics 47(8):983-1022, 2009, doi: 10.1090/00423110903078794.
    [45] Cooper, K., “Truck Aerodynamics Reborn – Lessons from the Past,” SAE Technical Paper, 2003, doi: https://doi.org/10.4271/2003-01-3376.
    [46] Kim, J.J., Lee, E.J., and Lee, S.J., “Wind Tunnel Tests on Drag Reduction of Heavy Vehicles using Sinusoidal Boat Tails,” Journal of Mechanical Science and Technology 34(1):201-208, 2020, doi: https://doi.org/10.1007/s12206-019-1221-1.
    [47] Salati, L., Schito, P., Cheli, F., “Strategies to Reduce the Risk of Side Wind Induced Accident on Heavy Truck,” Journal of Fluids and Structures 88:331-351, 2019, doi: https://doi.org/10.1016/j.jfluidstructs.2019.05.004.
    [48] Tsai, M.Y., “The Study of Using Corner Nozzle Flow for Truck Drag Reduction,” 2009, Master Thesis, National Cheng Kung University, Tainan, Taiwan.
    [49] Hou, L.C., “The Study of Gust Force on a Truck Using Corner Nozzle Flow Drag Reduction Device,” 2012, Master Thesis, National Cheng Kung University, Tainan, Taiwan.
    [50] Jeong, J., and Hussain, F., “On the Identification of a Vortex,” Journal of Fluid Mechanics 285:69-94, 1995, doi: https://doi.org/10.1017/S0022112095000462.
    [51] Dong, Y., Yang, Y., and Liu, C., “New Visualization Method for Vortex Structure in Turbulence by Lambda2 and Vortex Filaments,” Journal of Applied Mathematical Modelling 40(1):500-509, 2016, doi: https://doi.org/10.1016/j.apm.2015.04.059.
    [52] Hunt, J.C., Wray, A.A., and Moin, P., “Eddies, Streams, and Convergence Zones in Turbulent Flows,” Proceedings of the Summer Program 193-208, 1988.
    [53] Liu, C.Y., Wang, Y., Yang, Y., and Duan, Z., “New Omega Vortex Identification Method,” Science China: Physics, Mechanics and Astronomy 59(8):684-711, 2016, doi: https://doi.org/10.1007/s11433-016-0022-6.
    [54] The Guardian, “Japan Storm Kills Four and Injures Hundreds,” https://www.theguardian.com/world/2012/apr/04/japan-storm-honshu-tokyo-nuclear, accessed on Aug. 2019.
    [55] Federal Highway Administration, “Aerodynamic Device Compliance 23 CFR 658.15-16,” U.S. Department of Transportation, 2012.
    [56] Menter, F., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal 32(8):1598-1605, 1994, doi: 10.2514/3.12149.
    [57] ANSYS CFX (Version 11.0), ANSYS, Inc. 2006.
    [58] Garry, K.P., “Some Effects of Ground Clearance and Ground Plane Boundary Layer Thickness on the Mean Base Pressure of a Bluff Vehicle Type Body,” Journal of Wind Engineering and Industrial Aerodynamics 62(1):1-10, 1996, doi: https://doi.org/10.1016/S0167-6105(96)00054-2.
    [59] Lambourne, N.C., and Bryer, D.W., “The Bursting of Leading Edge Vortices-Some Observation and Discussion of the Phenomenon,” National Physical Laboratory Report and Memoranda No. 3282, 1961.
    [60] Levin, J., and Chen, S.H., “Flow Structure Investigation of a Truck under Crosswinds,” Journal of Applied Fluid Mechanics 15(5):1512-1523, 2022, doi: 10.47174/JAFM.15.05.1076.
    [61] Tobak, M., and Peake, D.J., “Topology of Three-dimensional Separated Flows,” Annual Review of Fluid Mechanics 14:61-85, 1982, doi: 10.1146/annurev.fl.14.010182.000425.
    [62] Levin, J., and Chen, S.H., “Overturn Prevention Simulation of a Truck with Corner Nozzle,” Journal of Fluids Engineering 144(11):111205, 2022, doi: https://doi.org/10.1115/1.4054707.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE