| 研究生: |
郭奕廷 Kuo, Yi-Ting |
|---|---|
| 論文名稱: |
利用關聯分析探討產業使用原料與替代再生料現況與再利用量提升機會 Using the Association Analysis to Discover Alternative Secondary Materials of Industries and Potentials to Reuse More |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 產業共生 、二次物料 、互動視覺化 、關聯分析 、廢棄物減量 、推薦系統 |
| 外文關鍵詞: | Industrial symbiosis, Association rule learning, Secondary materials, Interactive visualization, Waste reduction, Recommendation system |
| 相關次數: | 點閱:122 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球過度開發、環保意識抬頭的情況下,資源匱乏成為工業發展所需面對的重要課題,產業共生作為一種新興的解決方案開始受到重視。產業共生將工業情境模擬成自然生態系統,一間企業所生產的廢棄物可以作為另一產業之材料投入使用,透過廢棄物的交換可以節省原生材料的使用並且減少廢棄物的產出。在許多國家的工業區產業共生都帶來了可觀的環境和經濟效益。發展產業共生需要透過機會識別的方式來實現,許多研究發現資訊系統和工具對促進產業共生具有極大的應用潛力,可以幫助發現更多產業共生的機會。雖然台灣設有線上廢棄物交易平台,但業者對於登錄廢棄物的投入與產出的積極性不高,這導致資料庫的蒐集並不完整,從而影響媒合效益。
本研究基於台灣所有業者每年使用原料資料進行關聯性法則分析,利用先驗演算法來探討原料中的原生料和二次料是否具有關聯性,並生成二次料的推薦清單,為使用者提供使用二次料的機會, 研究採用了數據可視化技術和各式圖表, 讓使用者容易判讀結果,找到與其相關的二次料,從而提高二次料的利用率,促進產業共生的發展。
為了驗證本研究所設計的工具可以有效提供二次料推薦清單,本研究利用廢棄物推薦功能探索燃煤飛灰與其他原生料的關聯性, 發現燃煤飛灰和卜特蘭水泥常一起出現,且兩者在預拌混凝土製造業中使用比例相當高, 顯示這兩種材料在產品製造過程中有穩定的應用, 若能成功將燃煤飛灰推薦給僅使用卜特蘭水泥的業者,並在製程中加入燃煤飛灰達到一定比例,預計可節省大約 23 萬公噸的卜特蘭水泥使用量,同時消耗等量的燃煤飛灰,達到資源有效利用的目標。 本資訊系統預期將可展示廢棄物的再利用情況及機會, 並為業者提供適合的二次料, 促進產業共生的發展。
Resource scarcity poses a significant challenge to global industrial development amidst environmental concerns. Industrial symbiosis offers a promising solution by mirroring natural ecosystems' resource cycles, where one company's waste becomes another's raw material. This approach has delivered substantial environmental and economic benefits worldwide. However, Taiwan's online waste exchange platform needs more participation from operators, leading to ncomplete data and reduced matchmaking efficiency.
This study leverages annual raw material usage data from Taiwanese institutions to conduct association analysis using the Apriori algorithm. It identifies relationships between raw and secondary materials and generates recommendations to enhance secondary material utilization. Through data visualization, users can easily interpret results and find relevant secondary materials, thereby promoting industrial symbiosis.
To validate its effectiveness, the study applies this tool to recommend secondary materials like coal fly ash to industries using Portland cement. This approach shows significant potential for saving resources—up to 230,000 metric tons of Portland cement—by integrating coal fly ash into manufacturing processes. Overall, this information system aims to showcase waste reuse opportunities and provide tailored recommendations to industries, fostering the growth of industrial symbiosis.
Abhishek, K., & Biswas, A. (2022). Understanding Industrial Ecology: An Approach for Sustainable Industrial Development. In R. Anbanandam & S. Rangnekar (Eds.), Flexibility, Innovation, and Sustainable Business (pp. 299–306). Springer Nature. https://doi.org/10.1007/978-981-19-1697-7_21
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proc. 20th Int. Conf. Very Large Data Bases, VLDB, 1215, 487–499.
Aid, G., Brandt, N., Lysenkova, M., & Smedberg, N. (2015). Looplocal–a heuristic visualization tool to support the strategic facilitation of industrial symbiosis. Journal of Cleaner Production, 98, 328–335.
Angelis-Dimakis, A., Arampatzis, G., Pieri, T., Solomou, K., Dedousis, P., & Apostolopoulos, G. (2021). SWAN platform: A web-based tool to support the development of industrial solid waste reuse business models. Waste Management & Research, 39(3), 489–498.
Baas, L. (2011). Planning and uncovering industrial symbiosis: Comparing the Rotterdam and Östergötland regions. Business Strategy and the Environment, 20(7), 428–440.
Bacudio, L. R., Benjamin, M. F. D., Eusebio, R. C. P., Holaysan, S. A. K., Promentilla, M. A. B., Yu, K. D. S., & Aviso, K. B. (2016). Analyzing barriers to implementing industrial symbiosis networks using DEMATEL. Sustainable Production and Consumption, 7, 57–65.
Berkel, R. V., Fujita, T., Hashimoto, S., & Fujii, M. (2009). Quantitative Assessment of Urban and Industrial Symbiosis in Kawasaki, Japan. Environmental Science & Technology, 43(5), 1271–1281. https://doi.org/10.1021/es803319r
Boons, F., Chertow, M., Park, J., Spekkink, W., & Shi, H. (2017). Industrial symbiosis dynamics and the problem of equivalence: Proposal for a comparative framework. Journal of Industrial Ecology, 21(4), 938–952.
Boons, F., Spekkink, W., & Mouzakitis, Y. (2011). The dynamics of industrial symbiosis: A proposal for a conceptual framework based upon a comprehensive literature review. Journal of Cleaner Production, 19(9–10), 905–911.
Boulding, K. E. (2013). The economics of the coming spaceship earth. In Environmental quality in a growing economy (pp. 3–14). RFF Press.
Brundtland, G. H. (1987). Our common future—Call for action. Environmental Conservation, 14(4), 291–294.
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12, 331–370.
Chen, P.-C., & Liu, K.-H. (2021). Development of an interactive industrial symbiosis query system with structured industrial waste database in Taiwan. Journal of Cleaner Production, 297, 126673. https://doi.org/10.1016/j.jclepro.2021.126673
Chertow, M. R. (2000). Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and the Environment, 25(1), 313–337.
Chertow, M. R., Ashton, W. S., & Espinosa, J. C. (2008). Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies. Regional Studies, 42(10), 1299–1312. https://doi.org/10.1080/00343400701874123
Cutaia, L., Luciano, A., Barberio, G., Sbaffoni, S., Mancuso, E., Scagliarino, C., & La Monica, M. (2015). The experience of the first industrial symbiosis platform in Italy. Environmental Engineering and Management Journal, 14(7), 1521–1533.
Das, A., Jana, S., Ganguly, P., & Chakraborty, N. (2021). Application of association rule: Apriori algorithm in E-Commerce. 2021 Innovations in Energy Management and Renewable Resources (52042), 1–7.
Das, A., Ng, W.-K., & Woon, Y.-K. (2001). Rapid association rule mining. Proceedings of the Tenth International Conference on Information and Knowledge Management, 474–481.
Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D., & Roman, L. (2019). Mapping Industrial Symbiosis Development in Europe_ typologies of networks, characteristics, performance and contribution to the Circular Economy. Resources, Conservation and Recycling, 141, 76–98. https://doi.org/10.1016/j.resconrec.2018.09.016
Doménech, T., & Davies, M. (2009). The social aspects of industrial symbiosis: The application of social network analysis to industrial symbiosis networks. Progress in Industrial Ecology, An International Journal, 6(1), 68–99.
Domenech, T., & Davies, M. (2011). Structure and morphology of industrial symbiosis networks: The case of Kalundborg. Procedia - Social and Behavioral Sciences, 10, 79–89. https://doi.org/10.1016/j.sbspro.2011.01.011
Doménech, T., & Davies, M. (2011). The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks. Business Strategy and the Environment, 20(5), 281–296. https://doi.org/10.1002/bse.695
Excess Materials Exchange. (n.d.). Excess Materials Exchange. Retrieved August 18, 2024, from https://www.excessmaterialsexchange.com
Fraccascia, L., & Giannoccaro, I. (2020). What, where, and how measuring industrial symbiosis: A reasoned taxonomy of relevant indicators. Resources, Conservation and Recycling, 157, 104799.
Fraccascia, L., & Yazan, D. M. (2018). The role of online information-sharing platforms on the performance of industrial symbiosis networks. Resources, Conservation and Recycling, 136, 473–485.
Fraccascia, L., Yazdanpanah, V., Van Capelleveen, G., & Yazan, D. M. (2021). Energy-based industrial symbiosis: A literature review for circular energy transition. Environment, Development and Sustainability, 23(4), 4791–4825.
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge Discovery in Databases: An Overview. AI Magazine, 13(3), Article 3. https://doi.org/10.1609/aimag.v13i3.1011
Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing. Scientific American, 261(3), 144–153.
Grant, G. B., Seager, T. P., Massard, G., & Nies, L. (2010). Information and communication technology for industrial symbiosis. Journal of Industrial Ecology, 14(5), 740–753.
Han, J. (1996). Data mining techniques. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, 545. https://doi.org/10.1145/233269.280351
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM Sigmod Record, 29(2), 1–12.
Henriques, J., Azevedo, J., Estrela, M., & Dias, R. (2022). Relating industrial symbiosis and sustainable development goals. Materials Proceedings, 5(1), 111.
Holland, J. H. (2002). Complex Adaptive Systems and Spontaneous Emergence. In A. Q. Curzio & M. Fortis (Eds.), Complexity and Industrial Clusters (pp. 25–34). Physica-Verlag HD. https://doi.org/10.1007/978-3-642-50007-7_3
Home—Kalundborg Symbiosis. (2024). https://www.symbiosis.dk/en/
Hsieh, M.-S. (2019). 第二型糖尿病及其相關藥物對敗血症預後的關聯性分析. 國立臺灣大學職業醫學與工業衛生研究所學位論文, 2019, 1–86. https://doi.org/10.6342/NTU201904379
Jensen, P. D., Basson, L., Hellawell, E. E., Bailey, M. R., & Leach, M. (2011). Quantifying ‘geographic proximity’: Experiences from the United Kingdom’s national industrial symbiosis programme. Resources, Conservation and Recycling, 55(7), 703–712.
Khan, M. S., Muyeba, M., & Coenen, F. (2008). A Weighted Utility Framework for Mining Association Rules. 2008 Second UKSIM European Symposium on Computer Modeling and Simulation, 87–92. https://doi.org/10.1109/EMS.2008.73
Kincaid, J., & Overcash, M. (2001). Industrial ecosystem development at the metropolitan level. Journal of Industrial Ecology, 5(1), 117–126.
Kosmol, L., & Otto, L. (2020). Implementation barriers of industrial symbiosis: A systematic review.
Laybourn, P. (2013). Opportunities through industrial symbiosis: UK NISP and global experience. Industrial Symbiosis Workshop for Development Agencies and Regional Plans, 31.
Le Tellier, M., Berrah, L., Stutz, B., Audy, J.-F., & Barnabé, S. (2019). Towards sustainable business parks: A literature review and a systemic model. Journal of Cleaner Production, 216, 129–138. https://doi.org/10.1016/j.jclepro.2019.01.145
Lombardi, D. R., & Laybourn, P. (2012). Redefining industrial symbiosis: Crossing academic–practitioner boundaries. Journal of Industrial Ecology, 16(1), 28–37.
Low, M. (2013). Eco-cities in Japan: Past and future. Journal of Urban Technology, 20(1), 7–22.
Lütje, A., Willenbacher, M., Möller, A., & Wohlgemuth, V. (2019). Enabling the identification of industrial symbiosis through ict.
Lütje, A., & Wohlgemuth, V. (2020). Tracking sustainability targets with quantitative indicator systems for performance measurement of industrial symbiosis in industrial parks. Administrative Sciences, 10(1), 3.
Lybæk, R., Christensen, T. B., & Thomsen, T. P. (2021). Enhancing policies for deployment of Industrial symbiosis–What are the obstacles, drivers and future way forward? Journal of Cleaner Production, 280, 124351.
Massard, G., & Erkman, S. (2009). A web-GIS tool for industrial symbiosis-Preliminary results and perspectives. EnviroInfo (2), 261–268.
McDonough, W., & Braungart, M. (2010). Cradle to cradle: Remaking the way we make things. North point press.
Mittal, M., Pareek, S., & Agarwal, R. (2015). Efficient Ordering Policy for Imperfect Quality Items Using Association Rule Mining. In Encyclopedia of Information Science and Technology, Third Edition (pp. 773–786). IGI Global. https://doi.org/10.4018/978-1-4666-5888-2.ch074
Open Data Platform. (n.d.). Retrieved August 18, 2024, from https://data.footprintnetwork.org/#/
Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10059–10072.
Pearce, D. W., & Turner, R. K. (1989). Economics of Natural Resources and the Environment. JHU Press.
Raabe, B., Low, J. S. C., Juraschek, M., Herrmann, C., Tjandra, T. B., Ng, Y. T., Kurle, D., Cerdas, F., Lueckenga, J., & Yeo, Z. (2017). Collaboration platform for enabling industrial symbiosis: Application of the by-product exchange network model. Procedia Cirp, 61, 263–268.
Ruiz-Puente, C., & Jato-Espino, D. (2020). Systemic analysis of the contributions of co-located industrial symbiosis to achieve sustainable development in an industrial park in Northern Spain. Sustainability, 12(14), 5802.
Schroeder, P., Anggraeni, K., & Weber, U. (2019). The relevance of circular economy practices to the sustainable development goals. Journal of Industrial Ecology, 23(1), 77–95.
Schwarz, E. J., & Steininger, K. W. (1997). Implementing nature’s lesson: The industrial recycling network enhancing regional development. Journal of Cleaner Production, 5(1), 47–56. https://doi.org/10.1016/S0959-6526(97)00009-7
Shenoy, P., Haritsa, J. R., Sudarshan, S., Bhalotia, G., Bawa, M., & Shah, D. (2000). Turbo-charging vertical mining of large databases. ACM Sigmod Record, 29(2), 22–33.
Shi, L. (2022). Industrial symbiosis: Context and relevance to the sustainable development goals (SDGs). In Responsible consumption and production (pp. 381–391). Springer.
Song, Q., Guo, Q., Wang, K., Du, T., Qu, S., & Zhang, Y. (2014). A Scheme for Mining State Association Rules of Process Object Based on Big Data. Journal of Computer and Communications, 2(14), Article 14. https://doi.org/10.4236/jcc.2014.214002
Song, X., Geng, Y., Dong, H., & Chen, W. (2018). Social network analysis on industrial symbiosis: A case of Gujiao eco-industrial park. Journal of Cleaner Production, 193, 414–423. https://doi.org/10.1016/j.jclepro.2018.05.058
Stockholm 1972—United Nations Environment Programme. (n.d.). Retrieved April 10, 2024, from https://webarchive.loc.gov/all/20070411124414/http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=97
SYNERGie 4.0 | Interreg Europe—Sharing solutions for better policy. (2024, July 26). https://www.interregeurope.eu/good-practices/synergie-40-0
The Global Goals. (2019, December 9). The Global Goals. http://globalgoals.tw/
van Capelleveen, G., Amrit, C., & Yazan, D. M. (2018). A literature survey of information systems facilitating the identification of industrial symbiosis. From Science to Society: New Trends in Environmental Informatics, 155–169.
Yen, S.-J., & Chen, A. L. (1996). An efficient approach to discovering knowledge from large databases. Fourth International Conference on Parallel and Distributed Information Systems, 8–18.
Yeo, Z., Masi, D., Low, J. S. C., Ng, Y. T., Tan, P. S., & Barnes, S. (2019). Tools for promoting industrial symbiosis: A systematic review. Journal of Industrial Ecology, 23(5), 1087–1108.
中鋼推動循環經濟之具體做法與成果. (n.d.). Retrieved August 6, 2024, from https://research.kcg.gov.tw/Upload/EpaperFile/636349284662207579.pdf
台灣搖籃到搖籃平台. (n.d.). 台灣搖籃到搖籃平台. Retrieved August 18, 2024, from http://www.c2cplatform.tw
李冠緯. (2022). 運用廢棄物產出投入分析工業區產業共生現況及與其他區域資源整合機會 [國立成功大學]. In 環境工程學系: Vol. 碩士. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/z3sycp
林大勛. (2021). 以大數據分析數位貨幣與美國科技股之投資策略 [國立中正大學]. In 企業管理學系碩士在職專班: Vol. 碩士. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/p7tbtq
環境部. (2022). 環境部全球資訊網. 環境部全球資訊網; 環境部. https://www.moenv.gov.tw/
翁政雄. (2011). 從購買意願資料中挖掘高度相關性的關聯規則. 資訊管理學報, 18(4), 119–138. https://doi.org/10.6382/JIM.201110.0119
首頁 | 資源再利用管理資訊系統. (n.d.). Retrieved August 18, 2024, from https://rms.moenv.gov.tw/RMS/