| 研究生: |
廖壬男 Liao, Jen-Nan |
|---|---|
| 論文名稱: |
利用聚合物光子晶體複合物發展一套具有螢光增強性之生物感測裝置 Development of an Enhanced Immunofluorescence Biosensor Based on a Polymer - Photonic Crystal Complex |
| 指導教授: |
莊漢聲
Chuang, Han-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 光子晶體 、微流體 、生物感測器 、免疫分析法 、糖尿病視網膜病變 、脂質運載蛋白-1 |
| 外文關鍵詞: | Photonic Crystal, Microfluidic, Biosensor, Diabetic Retinopathy, Immunoassay, Lipocalin-1 |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病視網膜病變在現代是失明最主要的原因,如果我們在可以提前診斷並治療可以減緩並降低失明的可能性。現在診斷糖尿病視網膜病變的主要方式為眼底斷層掃描和眼底螢光血管造影,這兩種方式都有一些缺點,眼底斷層掃描需事先使用散瞳劑,這導致生活上暫時的不方便,而眼底螢光血管造影需注射螢光藥劑,這可能會造成部分的人有過敏的症狀,這兩個技術都是需要醫生去做判斷,兩個技術也都造價不斐且不方便的。因此在這個研究中我們想要開發一個可以定量分析的生物感測器來診斷糖尿病視網膜病變,我們的研究是基於光子晶體來增強螢光訊號,並搭配免疫分析法來達到定量分析。根據先前的研究,螢光可以藉由光子晶體的激發(excitation)及提取(extraction)特性來達到數倍的增強。其他研究也指出脂質運載蛋白-1與糖尿病視網膜病變有相關,正常人在眼淚中的脂質運載蛋白-1濃度為1-2 mg/mL,如果患有該疾病濃度會遠超於此,在我們的實驗中,光子晶體結合了免疫分析法,先將捕獲抗體(probe antibody)修飾在光子晶體表面,接著將BSA、抗原、抗體和螢光二級抗體依序接上,再量測其螢光強度。
在這個研究中,我們開發了一個生物感測器,此感測器結合了光子晶體及免疫分析,並搭配微流體系統,讓此裝置可以更簡易的操作。我們先將以修飾抗體的光子晶體黏附在晶片上,藉由重力及毛細力驅使抗原樣品流過光子晶體表面,在這操作中抗體抗原會接枝在表面上,並顯示相對應濃度的螢光亮度。因為相對於在離心管內反應時間較短,相對來說亮度也下降許多,但研究結果顯示在2、10、20 µg/mL組別的螢光亮度分別為42.2、44.8 和 48.9,再組間皆有顯著差異。在上述的表明正常人的淚液脂質運載蛋白-1的濃度為1-2mg/mL,因此可以藉由此特性將淚液樣品稀釋200倍,如患有此疾病螢光亮度將會高於44.8,反之亦然。這項研究提供了一個新穎的光學感測器,該技術有量化、省時且非侵入式,並在不久將可以適用在糖尿病視網膜病變的篩檢。
Diabetic retinopathy (DR) is a major cause of vision loss in the modern time. If the disease is detected in advance, we can pre-treat and start controlling blood glucose level to avoid progressing to serious condition. Nowadays, diagnostic methods have some shortcomings, such as time and resource consuming, technical and non-quantify. In this research, we develop a power-free and simple optical device for detecting biomarker to achieve diagnosis of DR. According to Bragg’s law, wavelength of photonic crystal (PhC) can be predicted by material refraction and particle size. Fluorescence intensity can be enhanced by characteristic of excitation and extraction of PhC. Immunoassay on PhC and feature of PhC accomplished detection. In order to determine DR, Lipocalin 1 (LCN1), one of the biomarkers of DR, was utilized to do the immunoassay. Probe antibody was modified on PhC surface, afterwards, antibody conjugating. BSA, antigen and probe antibody with SAb (SAb) were sequentially conjugated, fluorescence signal is proportional to concentration of LCN1 antigen.
In this research, we developed an innovative biosensor. Gravity and capillary force are used to drive sample to flow over modified PhC, subsequently, immuno-complex will be attached on PhC. Results demonstrate that the intensity in the chip is directly proportional to concentration of LCN1 antigen, and we also found that the intensity in chip is lower than in centrifuge tube, because of lower reaction time. The intensity in control of 2, 10, 20 µg/mL are 40.1, 42.2, 44.8 and 48.9, respectively. It demonstrates that signal between 2 and 10 µg/mL group have significance difference. The tear sample was diluted 200 folds, such dilution reducing the concentration of LCN1 to 5-10μg/mL, 20 µL of diluted tear sample was used to do the detection on chip. The fluorescence signal higher than 44.8 will be diagnosed DR patient. Our results show that the technique possessed advantages of diagnosis of DR for quantification, time-saving and non-invasive diagnosis. The device provided a practical means to achieve power-free analysis. Eventually, this thesis provides a promising optical biosensor for hassle-free DR screening in the near future.
[1] T. Akyazi, L. Basabe-Desmonts, and F. Benito-Lopez, "Review on microfluidic paper-based analytical devices towards commercialisation," Anal. Chim. Acta, vol. 1001, pp. 1-17, Feb 2018.
[2] C. Wang, M. Liu, Z. F. Wang, S. Li, Y. Deng, and N. Y. He, "Point-of-care diagnostics for infectious diseases: From methods to devices," Nano Today, vol. 37, p. 53, Apr 2021, Art no. 101092.
[3] J. C. Wang, H. Y. Ku, T. S. Chen, and H. S. Chuang, "Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing," Biosens. Bioelectron., vol. 89, pp. 701-709, Mar 2017.
[4] J. Y. Wang, J. S. Kwon, S. M. Hsu, and H. S. Chuang, "Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform," Lab Chip, vol. 20, no. 2, pp. 356-362, Jan 2020.
[5] E. Csosz, P. Boross, A. Csutak, A. Berta, and J. Tozser, "Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy," J. Proteomics, vol. 75, no. 7, pp. 2196-2204, Apr 2012.
[6] Y. F. Tan, T. T. Tang, H. S. Xu, C. Q. Zhu, and B. T. Cunningham, "High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system," Biosens. Bioelectron., vol. 73, pp. 32-40, Nov 2015.
[7] B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, "Assembly of large-area, highly ordered, crack-free inverse opal films," Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 23, pp. 10354-10359, Jun 2010.
[8] W. Qian, Z.-Z. Gu, A. Fujishima, and O. Sato, "Three-Dimensionally Ordered Macroporous Polymer Materials: An Approach for Biosensor Applications," Langmuir, vol. 18, no. 11, pp. 4526-4529, May 2002.
[9] Z. Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, and O. Sato, "Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor," Angewandte Chemie, vol. 41, no. 7, pp. 1154-6, Apr 2002.
[10] C. Bommer, E. Heesemann, V. Sagalova, J. Manne-Goehler, R. Atun, T. Barnighausen, S. Vollmer, "The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study," Lancet Diabetes Endocrinol., vol. 5, no. 6, pp. 423-430, Jun 2017.
[11] A. Katsarou, S. Gudbjornsdottir, A. Rawshani, D. Dabelea, and A. Lernmark,"Type 1 diabetes mellitus," Nat. Rev. Dis. Primers, vol. 3, p. 17, Art no. 17016. , Mar 2017.
[12] W. Matuszewski, A. Baranowska-Jurkun, M. M. Stefanowicz-Rutkowska, R. Modzelewski, J. Pieczynski, and E. Bandurska-Stankiewicz, "Prevalence of Diabetic Retinopathy in Type 1 and Type 2 Diabetes Mellitus Patients in North-East Poland," Med. Lith., vol. 56, no. 4, p. 9, Art no. 164, Apr 2020.
[13] JWY. Yau, SL. Rogers, R. Kawasaki, EL. Lamoureux, and TY. Wong,"Global Prevalence and Major Risk Factors of Diabetic Retinopathy," Diabetes Care, vol. 35, no. 3, pp. 556-564, Mar 2012.
[14] JQ. Li, T. Welchowski, M. Schmid, J. Letow, and RP. Finger, "Prevalence, incidence and future projection of diabetic eye disease in Europe: a systematic review and meta-analysis," Eur. J. Epidemiol., vol. 35, no. 1, pp. 11-23, Jan 2020.
[15] C. Sabanayagam, R. Banu, ML. Chee, R. Lee, and TY. Wong,"Incidence and progression of diabetic retinopathy: a systematic review," Lancet Diabetes Endocrinol., vol. 7, no. 2, pp. 140-149, Feb 2019.
[16] T. Y. Wong, C. M. Cheung, M. Larsen, S. Sharma, and R. Simó, "Diabetic retinopathy," Nat Rev Dis Primers, vol. 2, p. 16012, Mar 2016.
[17] L. Cwiklik, "Tear film lipid layer: A molecular level view," Biochimica et biophysica, vol. 1858, no. 10, pp. 2421-2430, Oct 2016.
[18] L. Zhou, R.W. Beuerman. "Tear analysis in ocular surface diseases," Prog Retin Eye Res., vol 31, no. 6, pp. 527-550, Nov 2012
[19] S. Hagan, E. Martin, and A. Enríquez-de-Salamanca, "Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine," The EPMA journal, vol. 7, no. 1, p. 15, Jul 2016.
[20] W. H. Bragg, "The Reflection of X-Rays by Crystals," Nature, vol. 91, no. 2280, pp. 477-477, Jun 1913.
[21] Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed Colloidal Spheres: Old Materials with New Applications," Advanced Materials, vol. 12, no. 10, pp. 693-713, May 2000.
[22] J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch, "Photonic crystals cause active colour change in chameleons," Nature Communications, vol. 6, no. 1, p. 6368, Mar 2015.
[23] Y. Yue and J. P. Gong, "Tunable one-dimensional photonic crystals from soft materials," J. Photochem. Photobiol. C: Photochem. Rev., vol. 23, pp. 45-67, Jun 2015.
[24] M. O. A. Erola, A. Philip, T. Ahmed, S. Suvanto, and T. T. Pakkanen, "Fabrication of Au- and Ag–SiO2 inverse opals having both localized surface plasmon resonance and Bragg diffraction," Journal of Solid State Chemistry, vol. 230, pp. 209-217, Oct 2015.
[25] N. Ganesh, W. Zhang, PC. Mathias, E. Chow, and BT. Cunningham,"Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotechnology, vol. 2, no. 8, pp. 515-520, Aug 2007.
[26] N. Ganesh, ID. Block, PC. Mathias, W. Zhang, and BT. Cunningham,"Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors," Opt. Express, vol. 16, no. 26, pp. 21626-21640, Dec 2008.
[27] H. Wu, W. Zhang, P. C. Mathias, and B. T. Cunningham, "Magnification of photonic crystal fluorescence enhancement via tm resonance excitation and TE resonance extraction on a dielectric nanorod surface," in Conference on Lasers and Electro-Optics 2010, pp. 1-2, 2010.
[28] Y.-A. Wu, P.-T. Wu, and C.-S. Huang, "Photonic crystal-enhanced fluorescence through the extraction of dually polarized modes," Opt. Lett., vol. 40, no. 5, pp. 733-735, Mar 2015.
[29] V. Tesař, "Microfluidic valves for flow control at low Reynolds numbers," J Vis, vol. 4, no. 1, pp. 51-60, Mar 2001.
[30] C. F. Carlborg, T. Haraldsson, K. Oberg, M. Malkoch, and W. van der Wijngaart, "Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices," Lab Chip, vol. 11, no. 18, pp. 3136-3147, 2011.
[31] M. Alhajj and A. Farhana, "Enzyme Linked Immunosorbent Assay," in StatPearls. Treasure Island (FL): StatPearls Publishing
[32] W. Guo, L. Vilaplana, J. Hansson, M. P. Marco, and W. van der Wijngaart, "Immunoassays on thiol-ene synthetic paper generate a superior fluorescence signal," Biosensors and Bioelectronics, vol. 163, p. 112279, Sep 2020.
[33] T. M. Valentin, E. M. DuBois, C. E. Machnicki, D. Bhaskar, F. R. Cui, and I. Y. Wong, "3D printed self-adhesive PEGDA-PAA hydrogels as modular components for soft actuators and microfluidics," Polym. Chem., vol. 10, no. 16, pp. 2015-2028, Apr 2019.
[34] DP. Browe, C. Wood, MT. Sze, KA. White, and JW. Freeman,"Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles," Polymer, vol. 117, pp. 331-341, May 2017.
[35] H. M. Lee and K. M. Fischer, "Cost-effective synthesis of polyethylene glycol diacrylate-acrylic acid (PEGDA-AA), a tissue engineering hydrogel ideal for C2C12 mouse muscle cells," FASEB J, vol. 33, no. S1, pp. 493.6-493.6, May 2019.
[36] N. Dehbari, J. Tavakoli, S. S. Khatraoab, and Y. H. Tang, "In situ polymerized hyperbranched polymer reinforced poly(acrylic acid) hydrogels," Mat. Chem. Front., vol. 1, no. 10, pp. 1995-2004, Oct 2017.
[37] A. I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans, "Structural and rheological properties of methacrylamide modified gelatin hydrogels," Biomacromolecules, vol. 1, no. 1, pp. 31-8, Feb 2000.
[38] H. J. Yoon, S. R. Shin, J. M. Cha, S.H. Lee, and H. Bae,"Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application," PLOS ONE, vol. 11, no. 10, p. e0163902, 2016.
[39] Y. H. Wang, M. Ma, J. N. Wang, W. J. Zhang, and Y. C. Guo, "Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials," Materials (Basel, Switzerland), vol. 11, no. 8, Aug 2018.
[40] D. H. Keum, S. K. Kim, J. Koo, G. H. Lee, and S. K. Hahn, "Wireless Smart Contact Lens for Diabetic Diagnosis and Therapy," Sci. Adv., 6, eaba3252, 2020.