簡易檢索 / 詳目顯示

研究生: 陳韋宏
Chen, Wei-Hung
論文名稱: 同源氧化銦鋅及本質氧化鋅奈米線之熱電性質研究
Thermoelectric properties of homologous In2O3(ZnO)n and ZnO nanowires
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 同源奈米線熱電熱傳導係數In2O3(ZnO)n奈米線
外文關鍵詞: homologous nanowire, thermoelectric, thermal conductivity, In2O3(ZnO)n nanowire
相關次數: 點閱:94下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗藉由固態反應將氧化鋅奈米線轉換成homologous材料 In2O3(ZnO)n奈米線,並且藉由控制熱蒸鍍銦的厚度,可以得到不同InO2-層密度、不同表面形貌的 In2O3(ZnO)n 奈米線。接著我們利用SEM、HAADF影像對結構作晶格排列的分析以及擴散機制的探討,然後再用電子束微影技術,在電性量測晶片上製備單根In2O3(ZnO)n及氧化鋅奈米線的量測元件,量測元件包含了四點電阻、MOSFET、Seebeck係數、熱傳導係數四種元件。
    比較In2O3(ZnO)n及氧化鋅奈米線的導電率、載子遷移率、載子濃度、Seebeck係數、熱傳導係數、熱電優值(ZT)的差異,探討homologous材料之層狀結構如何去改變這些性質。從實驗結果來看,和氧化鋅奈米線相比,In2O3(ZnO)n 奈米線的Seebeck係數(2.2倍)、熱傳導係數(3.55x10-2倍)都有助於提升熱電優值,而導電率(1.66x10-2倍)、功率因子S2σ (8.11 x10-2倍)則會使熱電優值下降,計算結果得到ZT值變成2.3倍,因此In2O3(ZnO)n奈米線確實讓ZT值提升了。
    將本實驗和文獻數據搭配,In2O3(ZnO)n奈米線在高溫時,導電率會大幅提升、熱傳導係數則維持不變、Seebeck係數小幅上升,因此我們預測它在高溫時ZT值將會大幅度的上升。

    In this experiment,ZnO nanowires are transformed into homologous
    In2O3(ZnO)n nanowires by solid state reactions. In2O3(ZnO)n nanowires with different InO2- layer densities and surface morphology can be obtained by controlling the thickness of the indium coating by thermal evaporation. Scanning electron microscopy and high angle annular dark field images are employed for analyzing lattice stacking and diffusion mechanism.Subsequently,we use e-beam lithography to take measure- ements including several nanodevices based on single In2O3(ZnO)n and ZnO nanowires, four-point resistance,metal oxide semiconductor field effect transistor, Seebeck coefficient, thermal conductivity.
    By comparing the structural differences between In2O3(ZnO)n and ZnO nanowires, we aim to study how InO2- layers change conductivity, carrier mobility, carrier concentration, Seebeck coefficient, thermal conductivity, figure of merit (ZT).The results show that, compared with a typical undoped ZnO nanowire, the as synthesized In2O3(ZnO)n nanowires possess more superior physical properties on Seebeck coefficient, thermal conductivity, whereas the corresponding electrical conductivity along with the power factor degrade. As a result,by combining all the properties, ZT is indeed increased,for the homologous nanowires.
    From our experiments,the electrical conductivity of the In2O3(ZnO)n nanowires increases significantly with temperature. In literature, thermal conductivity has been reported to remain constant and Seebeck coefficient increases slightly with the increasing of temperature. Thus, we predict that ZT will increase significantly at high temperatures.

    中文摘要..........I Abstract........II 致謝............III 目錄............IV 表目錄...........V 圖目錄...........V 第一章 序論.......1 1-1 前言.........1 1-2 研究動機......2 第二章 文獻回顧....3 2-1熱電材料之發展..3 2-2熱電原理.......5 2-3一維奈米線之熱傳導係數量測回顧.............8 2-4聲子散射機制...........................12 2-5一維奈線米線熱傳導係數之理論模型演進........17 2-6一維奈米線熱電性質量測方法................19 2-7氧化鋅材料簡介..........................25 2-8 Homologous Compounds InMO3(ZnO)n....27 第三章 實驗步驟與分析儀器....................30 3-1實驗流程...............................30 3-2奈米線成長.............................31 3-3導電率及載子濃度量測.....................32 3-4 Seebeck係數量測及元件製備...............34 3-5熱傳導係數量測及元件製備..................37 3-6結構與元素分析..........................39 第四章 結果與討論..........................43 4-1結構分析................................44 4-1-1氧化鋅奈米線..........................44 4-1-2 homologous In2O3(ZnO)n 奈米線.......46 4-1-3 InO2-層元素與結構分析.................48 4-1-4 In2O3(ZnO)n 奈米線之晶格排列..........51 4-1-5 In2O3(ZnO)n奈米線的表面起伏...........52 4-1-6 InO2-層的形成機制....................55 4-2 homologous In2O3(ZnO)n 奈米線電性量測...57 4-2-1四點量測導電率.........................57 4-2-2 MOSFET結構電性量測...................59 4-3 homologous In2O3(ZnO)n奈米線之Seebeck Coefficient計算與討論 .....................................64 4-3-1奈米線兩端之溫度差(∆T)量測..............64 4-3-2 奈米線兩端之電壓差(V)量測及Seebeck Coefficient之計算 與比較..............................69 4-4氧化鋅與homologous In2O3(ZnO)n奈米線之熱傳導係數計算與比較 ......................................72 4-4-1氧化鋅奈米線之熱傳導係數量測.............72 4-4-2 In2O3(ZnO)n奈米線之熱傳導係數量測......78 4-4-3 InO2-層對熱傳導係數的影響..............78 4-4-4表面粗糙度對熱傳導係數的影響.............81 4-5氧化鋅與In2O3(ZnO)n奈米線之熱電優值計算與比較....84 第五章 結論.....................................86 第六章 參考文獻..................................87

    [1] D. Lawrence Livermore National Laboratory, (2009).
    [2] J. Sommerlatte, K. Nielsch , and H. Böttner, Physik Journal 6 (5) (2007).
    [3]D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. W. Wang, D. Z. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. F. Ren and G. Chen, Nat Mater 10 (7), 532-538 (2011).
    [4] N. Wang, L. Han, H. C. He, N. H. Park and K. Koumoto, Energ Environ Sci 4 (9), 3676- 3679 (2011).
    [5]L. Hicks and M. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, 19, pp. 12727-12731, 1993.
    [6]L. Hicks and M. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, vol. 47, 24, pp. 16631-16634, 1993.
    [7]R. Venkatasubramanian, et al., "MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications," Journal of Crystal Growth, vol. 170, 1-4, pp. 817-821, 1997.
    [8]R. Venkatasubramanian, "Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures," Physical Review B, vol. 61, 4, pp. 3091-3097, 2000.
    [9]R. Venkatasubramanian, et al., "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, 6856, pp. 597-602, 2001.

    [10] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard and J. R. Heath, Nature 451 (7175), 168-171 (2008).
    [11] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. D. Yang, Nature 451 (7175), 163-U165 (2008).
    [12]T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, Science 297 (5590), 2229-2232 (2002).
    [13]K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, Science 303 (5659), 818-821 (2004).
    [14] B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. A. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen and Z. F. Ren, Science 320 (5876), 634-638 (2008).
    [15] F. J. DiSalvo, "Thermoelectric cooling and power generation," Science, vol. 285, 5428, pp. 703-706, 1999.
    [16] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annual Review of Materials Research, vol. 41, 1, pp. 399-431, 2011.
    [17] M. Cutler, et al., "Electronic Transport in Semimetallic Cerium Sulfide," Physical Review, vol. 133, 4A, pp. A1143-A1152, 1964.
    [18] D. M. Rowe, Thermoelectrics Handbook: Macro to Nano: CRC/To & Nano, 2005.
    [19] Richman.R, "Prospects for efficient thermoelectric materials in the
    near term," presented at the DARPA/DOE High Efficient Thermoelectric
    Workshop, San Diego, CA, 2002.
    [20] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003;83, 2934.
    [21] Li D.Y, Wu Y, Fan R, Yang P.D, Majumdar A. Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 2003;83, 3186.
    [22] Shi L, Li D, You C, Jang W, Kim D, Yao Z, Kim P, Majumdar A. Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. J. Heat Transfer 2003;125, 881.
    [23] Campbell I. H, Fauchet P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid St. Commun. 1986;58,739.
    [24] J. Anaya, J. Jiménez and T. Rodríguez, Nanowires - Recent Advances, InTech, 2012
    [25] Zhou J, Jin C, Seol J.H, Li X, Shi L. Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Appl. Phys. Lett 2005;87, 133109.
    [26] Guthy C, Nam C, Fischer J.E. Unusually low thermal conductivity of gallium nitride nanowires. J. Appl. Phys. 2008;103, 064319.
    [27] You C. Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties. Nano Lett. 2012;12,2918.
    [28] Shi L, Hao Q, Choongho Y, Mingo N, Xiangyang K. Thermal conductivities of individual tin dioxide nanobelts. Appl. Phys. Lett. 2004;84, 2638.
    [29] Wingert M.C, Chen Z.C.Y, Dechaumphai E, Moon J, Kim J, Xiang J, Chen R. Thermal Conductivity of Ge and Ge–Si Core–Shell Nanowires in the Phonon Confinement Regime.Nano Lett 2011;11, 5507.
    [30] Hochbaum A.I, Chen R, Delgado R.D, Liang W, Garnett E.C, Najarian M, MajumdarA, Yang P. Rough Silicon Nanowires as High Performance Thermoelectric Materials.Nature 2008;451, 163.
    [31] Park Y, Kim J, Kim H, Kim I, Lee K, Seo D, Choi H, Kim W. Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters.Appl. Phys. A 2011;104,7.
    [32] Lim J, Hippalgaonkar K, Andrews S.C, Majumdar A, Yang P. Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires. Nano Lett. 2012;12,2475.
    [33] Kim H, Park Y, Kim I, Kim J, Choi H, Kim W. Effect of surface roughness on thermal conductivity of VLS-grown rough Si1−xGex nanowires. Appl. Phys. A 2011;104, 23.
    [34] CJ. Glassbrenner, GA Slack , Thermal conductivity of silicon and germanium from 3 K to the melting point, Phys. Rev, 1964
    [35] Ziman J.M. Electrons and Phonons New York: Oxford University Press; 1967.
    [36] Moore A.L, Saha S.K, Prasher R.S, Shi L. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett 2008;93, 083112.
    [37] Soffer S.B. Statistical Model for the Size Effect in Electrical Conduction. J. Appl. Phys.1967;38, 1710.
    [38] Balandin A, Wang K.L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev B1998;58, 1544.
    [39] Zou J, Balandin A. Phonon heat conduction in a semiconductor nanowire. J. Appl.Phys. 2001;89, 2932.
    [40] Mingo N. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 2003;68, 113308.
    [41] Vo¨lklein, Reith, Schmitt, Huth, Rauber, and Neumann, Microchips for the Investigation of Thermal and Electrical Properties of Individual Nanowires, Journal of ELECTRONIC MATERIALS, Vol. 39, No. 9, 2010
    [42] F V¨olklein et al, The experimental investigation of thermal conductivity and the Wiedemann–Franz law for single metallic nanowires, Nanotechnology 20 (2009) 325706 (8pp)
    [43] M. Tsuboi, A. Wada, J. Chem. Phys. (1968), 48, 2615-2618
    [44] B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, E. Ziegler, Phys.Status Solidi B (1983),119, 227
    [45]G.J. Exarhos, S.K. Sharma, Thin Solid Films (1995), 270, 27-32
    6. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Appl. Surface Sci. (2002),197-198, 362-367
    [46]Y.Liu, H. Zhang, X. An, C. Gao, Z. Zhang, J. Zhou, M. Zhou, E. Xie, J.
    Alloys Compounds (2010), 507, 772-776
    [47]C.F. Windisch Jr., G.J. Exarhos, C. Yao, L.Q. Wang, J. Appl. Phys. (2007),
    101, 123711
    [48]G. J. Exarhos, A. Rose, L.Q. Wang, C.F. Windisch Jr., J. Vac. Sci. Technol.A (1998), 16, 1926
    [49] Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W.
    Litton, Nelson et al., S. Niki, L.J. Brillson, Appl. Phys. Lett. (2004), 84, 2545
    [50] G.J. Exarhos, A. Rose, C.F. Windisch Jr, Thin Solid Films (1997), 308, 56
    [51] R. Groenen, M. Creatore, M.C.M. van de Sanden, Appl. Sur. Sci. (2005), 241,321-325
    [52]J.H. Huang, C.P. Liu, Thin Solid Films (2006), 498, 152-157
    [53]J.F. Yan, Y.M. Lu, Y.C. Liu, H.W. Liang, B.H. Li, D.Z. Shen, J.Y. Zhang,
    X.W. Fan, J. Crys. Grow. (2004), 266, 505-510
    [54]Y. Kajikawa, S. Noda, H. Komiyama, J. Vac. Sci. Technol. A (2003), 21,
    1943-1954
    [55]S. Nicolay, S. Fay, C. Ballif, Cryst. Grow. Des. (2009), 9, 4957-4962
    [56]X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, Y. Zhao, J. Cryst.Grow. (2006), 296, 43-50
    [57] A. van der Drift, Philips Res. Pep. (1967), 22, 267-288
    [58] E.A. Matson, S.A. Polyakov, Physica Status Solidi (a) (1977), 41, K93–K95
    [59]Y. Kajikawa, J. Cryst. Grow. (2006), 289, 387-384
    [60] Y. Gu, J. Qi, Y. Zhang, Mater. Sci. Forum (2007), 561-565, 1861-1864
    [61] M. Matsuoka, K. Ono, Appl. Phys. Lett. (1988), 53, 1393
    [62] P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. (2003), 93, 3963
    [63] S.J. Henley, M.N.R. Ashfold, D. Cherns, Thin Solid Films (2002), 422, 69-72
    [64]L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van
    116Tendeloo, J. Cryst. Grow. (2005), 277, 26-31
    [65] T. Hiramatsu, M. Furuta, H. Furuta, T. Matsuda, C. Li, T. Hirao,
    J. Cryst. Grow. (2009), 311, 282-285
    [66]Y. Cui, G. Du, Y. Zhang, H. Zhu, B. Zhang, J. Cryst. Grow.
    (2005), 282,389-393
    [67] X.L. Chen, X.H. Geng, J.M. Xue, D.K. Zhang, G.F. Hou, Y. Zhao,
    J. Cryst. Grow. (2006), 296, 43-50
    [68] D.N. Lee, Mater. Sci. Forum (2002), 408-412, 75-94
    [69]J.I. Hong, J. Bae, Z.L. Wang, R.L. Snyder, Nanotechnol. (2009),
    20, 085609
    [70]R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Sarua, M.
    Kuball, J. Raman Spectrosc. (2009), 40, 556.
    [72] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices and
    Microstructures, 34, 3 (2003)
    [73] Juarez L. F. Da Silva, Yanfa Yan, and Su-Huai Wei, Rules of Structure Formation for the Homologous InMO3(ZnO)n Compounds, PhysRevLett. 100, 255501 (2008)
    [74] H. Kasper, Z. Anorg. Allg. Chem. 349, 113 (1967).
    [75] P. J. Cannard and R. J. D. Tilley, J. Solid State Chem. 73,418 (1988).
    [76] N. Kimizuka and E. Takayama, J. Solid State Chem. 40,109 (1981).
    [77] N. Kimizuka, M. Isobe, and M. Nakamura, J. Solid State Chem. 116, 170 (1995).
    [78] M. Isobe, N. Kimizuka, M. Nakamura, and T. Mohri, Acta Crystallogr. Sect. C 50, 332 (1994).
    [79] Y. Yan, S. J. Pennycook, J. Dai, R. P. H. Chang, A. Wang, and T. J. Marks, Appl. Phys. Lett. 73, 2585 (1998).
    [80] S. M. SZE, semiconductor devices, physics and technology, (1985)
    [81] D. A. Neamen, semiconductor physics and devices, (2003)
    [82] S. M. SZE, modern semiconductor device physics, (1998)
    [83]汪建民, 材料分析 Materials Analysis, 1998.
    [84]Yang et. al, Atomic-level control of the thermoelectric properties in polytypoid nanowires, Chem. Sci., 2011, 2, 706–714.
    [85] J. Goldberger, D. J. Sirbuly, P. Yang, journal of physics chemical B, 109,
    9 (2005)
    [86]黃博建,銦摻雜及未摻雜之氧化鋅奈米線及奈米緞帶熱電性質之研究,
    國立成功大學 碩士論文,2012.
    [87] K. Nomura, et al. Thin-film transistor fabricated in single-crystalline
    transparent oxide semiconductor, Science, 2003, 300, 1269–1272.
    [88]沈卉紋, "Growth and Electrical Properties of Indium Doped ZnO
    Nanostructures," 國立成功大學 碩士論文, 2011.
    [89] S. P. Chiu1, Y. H. Lin, J. J. Lin, nanotechnology, 20, 015203 (2009)
    [90] Y. Cui, X. Duan, J. Hu, C. M. Lieber, the journal of physical chemistry B,
    104, 5213 (2000)
    [91] K. Keem, D. Y. Jeong, S. Kim, nano letters, 6, 1454 (2006)
    [92] F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, and A. L. Hutchinson,
    New Quantum Photoconductivity and Large Photocurrent Gain by
    Effective-Mass Filtering in a Forward-Biased Superlattice p-n Junction,
    PHYSICAL REVIEW LETTERS, VOLUME 55, NUMBER 10,1985.
    [93]S. H. Lee, et al., "Thermoelectric properties of individual single-crystalline
    PbTe nanowires grown by a vapor transport method," Nanotechnology, vol. 22, 29, p. 295707, 2011.
    [94]Q. Huang, et al., "Electrical Failure Analysis of Au Nanowires," Ieee
    Transactions on Nanotechnology, vol. 7, 6, pp. 688-692, 2008.
    [95] D. H. Lloyd, Physics Laboratory Manual, 2nd ed.: Saunders college
    Publishing, 1998.
    [96]C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL,
    P. 663, 1996.
    [97] G. Chen, A. Narayanaswamy and C. Dames, Engineering nanoscale
    phonon and photon transport for direct energy conversion,Superlattices
    Microstruct., 2004, 35, 161–172.
    [98] Ziman J.M. Electrons and Phonons New York: Oxford University Press;
    1967.
    [99] H. Kaga, R. Asahi and T. Tani, Thermoelectric properties of highly
    textured Ca-doped (ZnO)mIn2O3 ceramics, Jpn. J. Appl. Phys.,
    2004, 43, 7133.
    [100] Saniya LeBlanc, Sujay Phadke, Takashi Kodama, Alberto Salleo, and Kenneth E. Goodson, Electrothermal phenomena in zinc oxide nanowires and contacts, Appl. Phys. Lett. 100, 163105 (2012)
    [101] Cong Tinh Bui, Rongguo Xie,* Minrui Zheng, Qingxin Zhang, Chorng Haur Sow, Baowen Li,* and John T. L. Thong*, small,2012, 8, No. 5, 738–745
    [102] Koumoto et al,Thermoelectric Properties of Homologous Compounds in the ZnO-In2O3 System, J. Am. Ceram. Soc. 79 [8]2193-96(1996)
    [103] David B. Williams,C. Barry Carter, Transmission Electron Microscopy A Textbook for Materials Science,Springer.
    [104] Da Peng Li, Guan ZhongWang and Xin Hai Han, Raman property of In doped ZnO superlattice nanoribbons, J. Phys. D: Appl. Phys. 42 (2009) 175308.
    [105] Yang L W, Wu X L, Huang G S, Qiu T and Yang Y M 2005
    J. Appl. Phys. 97 014308.
    [106] Wang Ch Y, Dai Y, Pezoldt J, Lu B, Kups Th,Cimalla V and Ambacher O 2008 Cryst. Growth Des. 8 1257.

    下載圖示 校內:2018-08-05公開
    校外:2018-08-05公開
    QR CODE