| 研究生: |
曾冠豪 Zeng, Guan-Hau |
|---|---|
| 論文名稱: |
三維有限元素模型與光學同調斷層掃描術於正常與糖尿病變周邊神經組織黏彈性力學之研究 Application of Three Dimensional Finite Element modeling and Optical Coherence Tomography to Bioviscoelasticity of Ultra-structure of Normal and Diabetic Peripheral Nerve |
| 指導教授: |
陳元方
Chen, Yuan-Fang |
| 共同指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 周邊神經組織 、光學同調斷層掃描顯微鏡 、逆向有限元素法 、黏彈力學理論 、糖尿病 |
| 外文關鍵詞: | peripheral nerve tissues, optical coherence tomography, inverse finite element, viscoelastic theory, diabetes |
| 相關次數: | 點閱:171 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
健康神經系統在人體中是非常重要的,神經組織在合理的受力情形下在體內形變與位移,是人體能夠正常生活的要素,許多常見的病痛都是神經組織受到不正常的壓力所引發,如腕隧道症候群、肘隧道症候群、腰椎骨刺與椎間盤突出症等。此外糖尿病也常引發神經病變,因病變的神經不同而有不同的症狀,因此了解神經組織的機械性質和其受糖尿病影響的變化,有助於預防糖尿病所引起的併發症,以及神經修復和再生的研究。
過去對於神經組織機械性質探討的研究,多將其整體視為單一個組織,本研究以光學同調斷層掃描術與離體平板壓縮力學實驗得到神經之內部結構影像,以之建立三維有限元素模型,針對神經組織內組織結構神經外膜、神經束膜和神經內層進行機械性質的研究,發現切楊氏模數的大小依序為神經束膜、神經內層與神經外模,且神經外膜為神經組織開始受到壓力時緩衝壓力的結構,神經束膜則是主要承受剪應力的部位,兩者之功能皆為當神經組織受到外力時保護神經內層。糖尿病鼠的神經組織結構剛性則皆大於正常鼠,且在相同應變量時,鬆弛階段的回復力量比例較小。
A healthy nervous system is very important for a healthy human body. The deformation and displacement of nerve tissues due to physiological force in the body is an essential factor in human life. There are many common diseases caused by compressing nerve tissues with abnormal pressure, such as carpal tunnel syndrome, cubital tunnel syndrome, lumbar osteophytes, and herniated intervertebral disc. In addition, diabetes also induces a variety of neuropathies and different kinds of nerve tissues result in different symptoms. Consequently, understanding the effects of diabetes on altering mechanical properties of nerves may prevent complications of diabetes mellitus and develop techniques for nerve repair and regeneration.
In previous studies, most researchs postulate mechanical properties of nerve tissues as single phase material. In this dissertation, using the optical coherence tomography, a technology that obtains the internal structure of nerve tissue, in vitro parallel plates compression experiment can be modeled by the three-dimensional finite element method. From the model simulations, the results show the stiffness of perineurium, endoneurium, and epineurium in descending order. Furthermore, the epineurium cushions the pressure when the nerve is compressed in the beginning and perineurium mainly takes the shear stress. The function of the above two tissues is to protect the endoneurium. The stiffness of perineurium, epineurium and endoneurium in diabetic group are all larger than those of normal group, and the proportion of force reduction is less in the relaxation test in diabetic group at the same strain .
[1] K.S Topp and B.S. Boyd, “Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice,” Physical Therapy, 2006. 86(1): 92-109.
[2] J. Haftek, Warsaw and Poland, “Stretch Injury of Peripheral Nerve: Acute Effects of Stretching on Rabbit Nerve,” Journal of Bone & Joint Surgery, British Volume, 1970. 52-B(2): 354-365.
[3] S.Sunderland, Nerve and nerve injuries. 1978, Churchill Livingstone: Edinburgh.
[4] M.K. Kwan, E.J. wall, J. Massie and S.R. Garfin, “Strain, Stress and Stretch of Peripheral Nerve Rabbit Experiments invitro and invivo,” Acta Orthopaedica Scandinavica, 1992. 63(3):267-272.
[5] H. Millesi, G. Zoch and R. Reihsner, “Mechanical Properties of Peripheral Nerves,”Clinical Orthopaedics and Related Research, 1995. 314:76-83.
[6] E.T. Walbeehm, A. Aafoke, T.D. Wit, F. Holman, S.E.R. Hovius and R.A. Brown, “Mechanical Functioning of Peripheral Nerves: Linkage with the Mushrooming Effect,” Cell and Tissue Research, 2004. 316(1): 115-121.
[7] B. Rydevik and C. Nordborg, “Changes in Nerve Function and Nerve-Fiber Structure Induced by Acute, Graded Compression,” Journal of Neurology Neurosurgery and Psychiatry, 1980. 43(12): 1070-1082.
[8] E.K. Main, J.E. Goetz, M.J. Rudert C.M. Goreham-Voss and T.D. Brown, “Apparent Transverse Compressive Material Properties of the Digital Flexor Tendons and the Median Nerve in the Carpal Tunnel,” Journal of Biomechanics, 2011. 44(5):863-868.
[9] M.S. Ju, C.C.K. Lin and C.W. Lin, “Transverse Elasticity of Rabbit Sciatic Nerves tested by in vitro Compression,” Journal of the Chinese Institute of Engineers, 2004. 27(7): 965-971.
[10] M.S. Ju, C.C.K. Lin, J.L Fan and R.J. Chen, “Transverse Elasticity and Blood Perfusion of Sciatic Nerves under in situ Circular Compression,” Journal of Biomechanics, 2006. 39(1): 97-102.
[11] 陳煜欣, 有限元素模型與光學同調斷層掃描術於周邊神經組織之黏彈性力學之研究, 2012, 國立成功大學機械工程學系: 碩士論文.
[12] 陳榮健, 類線性黏彈理論於正常與糖尿病變周邊神經組織在位力學與類神經細胞力學之研究, 2010, 國立成功大學機械工程學系: 博士論文.
[13] F. Cheng, G.U. Unnikrishnan, and J.N. Reddy, “Micro -Constituent Based Viscoelastic Finite Element Analysis of Biological Cells,” International Journal of Applied Mechanics, 2010. 02(02): 229-249.
[14] B. Ahn and J. Kim, “An Efficient Soft Tissue Characterization Method for Haptic Rendering of Soft Tissue Deformation in Medical Simulation,” in Frontiers in the Convergence of Bioscience and Information Technologies, 2007. FBIT 2007. 2007.
[15] R. Karimi, T. Zhu, B.E. Bouma and M.R.K. Mofrad, “Estimation of Nonlinear Mechanical Properties of Vascular Tissues via Elastography,” Cardiovascular Engineering, 2008. 8(4):191-202.
[16] C. Robertson, S.W. Lee, Y.C. Ahn, S. Mahon, Z. Chen, M. Brenner and S.C.George, “Investigating in vivo Airway Wall Mechanics during Tidal breathing with Optical Coherence Tomography,” Journal of Biomedical Optics, 2011. 16(10):106011-106011.
[17] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: Active Contour Models,” International Journal of Computer Vision, 1988. 1(4): 321-331.
[18] Y. Grinberg, “Fascicular Perineurium Thickness, Size, and Position Affect Model Predictions of Neural Excitation,” Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2008. 16(6): 572-581.
[19] N.H. Scott, “The Incremental Bulk Modulus, Young's Modulus and Poisson's Ratio in Nonlinear Isotropic Elasticity: Physically Reasonable Response,” Mathematics and Mechanics of Solids, 2007. 12(5):526-542.
[20] S. Vasan, X. Zhang, X. Zhang, A. Kapurniotu, J. Bernhagen, S. Teichberg, J. Basgen, D. Wagle, D. shih, I. Terlecky, R. Bucala, A. Cerami, J. Egan and P. Bucala, “An agent Cleaving Glucose-Derived Protein Crosslinks in vitro and in vivo,” Nature, 1996, 382(6588):275-278.