| 研究生: |
王永紳 Wang, Yong-Shen |
|---|---|
| 論文名稱: |
利用拉曼光譜解析二維奈米材料的物理特性 To analytic the physical features of two-dimensional nanomaterials by using Raman Spectroscopy |
| 指導教授: |
崔祥辰
Chui, Hsiang-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 陽極氧化鋁 、二硫化鉬電晶體 、熱延展 、閘極電控 、外加場 |
| 外文關鍵詞: | AAO, MoS2 transistor, thermal expansion, electrostatic gating, external field |
| 相關次數: | 點閱:74 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近期,許多研究學者致力於二維材料及奈米材料上的光譜研究,藉由材料的光致螢光光譜(PL)和拉曼光譜(Raman Spectroscopy)來分析其相關的光學特性及運用層面。舉例來講,陽極氧化鋁(AAO)的表面電漿子傳輸機制、二硫化鉬(MoS2)材料的內層應力與能帶結構關係,及其偏振模態特性等,但較少探討AAO樣品上的雷射退火效應及二硫化鉬(MoS2)電晶體的閘極電性量測。
因此,本篇論文的研究重點將著眼於兩個領域,前半段實驗在於觀察AAO樣品在不同的雷射功率退火下的PL光譜變化性,並針對其光譜強度、特徵峰位置及線寬作分析歸因。由退火實驗得知,隨著雷射功率加大,AAO中的陰離子因為熱解效應而顯得稀少,導致鋁離子Al^(3+)較少機會與陰離子化合成氧化鋁Al2O3。
後半段實驗則是觀察當施予MoS2元件不同的閘極電壓,其產生的拉曼光譜差異性。隨著外加的閘極電壓不斷提昇,發現A1g模態的線寬也跟著擴大,可能是因為電子與聲子的耦合效應變強所致。調變閘極頻率從0
MHz到5 MHz,拉曼光譜強度緩慢增加,爾後調高至20 MHz,強度就呈現下降趨勢。
Researchers have examined recent developments in research on optical features of Raman spectra and Photoluminescence (PL) spectra among several two-dimensional materials and nanomaterials. Such research could be applied to realize surface plasmon transport in AAO film. Others have focused on strain-induced electronic structure change, polarization-dependent studies on Molybdenum disulfide (MoS2). Laser annealing on AAO film and electric properties of MoS2 transistor with gate voltage were relatively unexplored.
Thus, the paper studied the evolution of PL spectra as a function of laser annealing power on AAO film and the Raman profiles with different top gate voltage on MoS2 transistor, especially for direct-current (DC) and alternating-current (AC) applied gate voltage. The findings of PL spectra and Raman spectra were categorized and quantified in order to ascertain the optical mechanisms of the samples under distinct external field effects.
The results revealed that the annealed AAO film with less anion impurity content due to the pyrolysis, resulting in weaker attraction of Al^(3+) to form Al2O3, as a function of annealing power. The broadening of linewidth for A1g mode was a result of strengthening of electron-phonon coupling with increased gate voltage (Vg). Peak intensity increased slightly with AC gate frequency, from 0 MHz to 5 MHz, and decreased to 20 MHz.
Chapter 1
1. Han, C., et al., One-dimensional Nanostructures for Photocatalytic Organic Synthesis. Current Organic Chemistry, 2015. 19(6): p. 484-497.
2. Xia, Y.N., et al., One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 2003. 15(5): p. 353-389.
3. Zhong, Z.Y., et al., Synthesis of one-dimensional and porous TiO2 nanostructures by controlled hydrolysis of titanium alkoxide via coupling with an esterification reaction. Chemistry of Materials, 2005. 17(26): p. 6814-6818.
4. Boyce, M., et al., Sun Protection Outreach Teaching by Students (SPOTS): Skin Cancer Education in the Adolescent Population. Annals of Surgical Oncology, 2010. 17: p. S116-S116.
5. Konenkamp, R., R.C. Word, and C. Schlegel, Vertical nanowire light-emitting diode. Applied Physics Letters, 2004. 85(24): p. 6004-6006.
6. Nielsch, K., et al., Hexagonally ordered 100 nm period nickel nanowire arrays. Applied Physics Letters, 2001. 79(9): p. 1360-1362.
7. Yokoo, A., et al., 63-nm-pitch pit pattern fabricated on polycarbonate surface by direct nanoprinting. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1999. 38(12B): p. 7268-7271.
8. Chik, H. and J.M. Xu, Nanometric superlattices: non-lithographic fabrication, materials, and prospects. Materials Science & Engineering R-Reports, 2004. 43(4): p. 103-138.
9. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
10. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010. 5(10): p. 722-726.
11. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
12. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
13. Fang, H., et al., High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Letters, 2012. 12(7): p. 3788-3792.
14. Li, H.N., et al., Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy, 2015. 18: p. 293-305.
15. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013. 8(7): p. 497-501.
16. Schumacher, A., et al., Single-Layer Mos2 on Mica - Studies by Means of Scanning Force Microscopy. Surface Science, 1993. 289(1-2): p. L595-L598.
17. Frindt, R.F., Single Crystals of Mos2 Several Molecular Layers Thick. Journal of Applied Physics, 1966. 37(4): p. 1928-&.
18. Kam, K.K. and B.A. Parkinson, Detailed Photocurrent Spectroscopy of the Semiconducting Group-Vi Transition-Metal Dichalcogenides. Journal of Physical Chemistry, 1982. 86(4): p. 463-467.
19. Mak, K.F., et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13).
20. De, D., et al., Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials. Superlattices and Microstructures, 2010. 47(3): p. 377-410.
21. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5(7): p. 487-496.
22. Rice, C., et al., Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Physical Review B, 2013. 87(8).
23. Cao, T., et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012. 3.
24. Stacy, A.M. and D.T. Hodul, Raman-Spectra of Ivb and Vib Transition-Metal Disulfides Using Laser Energies near the Absorption Edges. Journal of Physics and Chemistry of Solids, 1985. 46(4): p. 405-409.
25. Wieting, T.J. and J.L. Verble, Infrared and Raman Studies of Long-Wavelength Optical Phonons in Hexagonal Mos2. Physical Review B, 1971. 3(12): p. 4286-&.
26. Sahoo, S., et al., Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2. Journal of Physical Chemistry C, 2013. 117(17): p. 9042-9047.
27. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. Acs Nano, 2010. 4(5): p. 2695-2700.
28. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B, 2011. 83(24).
29. Bassil, A., et al., Controlled laser heating of carbon nanotubes. Applied Physics Letters, 2006. 88(17).
30. Najmaei, S., et al., Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Applied Physics Letters, 2012. 100(1).
31. Molina-Sanchez, A. and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Physical Review B, 2011. 84(15).
Chapter 2
32. Raman, C.V. and K.S. Krishnan, A new type of secondary radiation (Reprinted from Nature, vol 121, pg 501-502, 1928). Current Science, 1998. 74(4): p. 381-381.
33. Foley, H.M., The Pressure Broadening of Spectral Lines. Physical Review, 1946. 69(11-1): p. 616-628.
34. Agarwal, N.R., et al., Structure and chain polarization of long polyynes investigated with infrared and Raman spectroscopy. Journal of Raman Spectroscopy, 2013. 44(10): p. 1398-1410.
35. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
36. Fleischmann, M., P.J. Hendra, and Mcquilla.Aj, Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
37. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
38. Perez, R., A. Ruperez, and J.J. Laserna, Evaluation of silver substrates for surface-enhanced Raman detection of drugs banned in sport practices. Analytica Chimica Acta, 1998. 376(2): p. 255-263.
39. Srnova-Sloufova, I., et al., Surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering excitation profiles of Ag-2,2 '-bipyridine surface complexes and of [Ru(bpy)(3)](2+) on Ag colloidal surfaces: Manifestations of the charge-transfer resonance contributions to the overall surface enhancement of Raman scattering. Inorganic Chemistry, 2000. 39(16): p. 3551-3559.
40. Stiles, P.L., et al., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry, 2008. 1: p. 601-626.
41. Meyer, M.W. and E.A. Smith, Optimization of silver nanoparticles for surface enhanced Raman spectroscopy of structurally diverse analytes using visible and near-infrared excitation. Analyst, 2011. 136(17): p. 3542-3549.
42. Cai, W.B., et al., Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surface Science, 1998. 406(1-3): p. 9-22.
43. McFarland, A.D., et al., Wavelength-scanned surface-enhanced Raman excitation spectroscopy. Journal of Physical Chemistry B, 2005. 109(22): p. 11279-11285.
44. Hildebrandt, P. and M. Stockburger, Surface-Enhanced Resonance Raman-Spectroscopy of Rhodamine-6g Adsorbed on Colloidal Silver. Journal of Physical Chemistry, 1984. 88(24): p. 5935-5944.
45. Qi, J.W., et al., Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Research Letters, 2013. 8.
46. Kuisma, M., et al., Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations. Physical Review B, 2015. 91(11).
47. Klinkla, R., U. Pinsook, and S. Boonchui, Role of Symmetry in Coupled Localized Surface Plasmon Resonance of a Nanosphere Pair. Plasmonics, 2015. 10(3): p. 643-653.
48. Hutter, E. and J.H. Fendler, Exploitation of localized surface plasmon resonance. Advanced Materials, 2004. 16(19): p. 1685-1706.
49. Hao, J.C., et al., Aggregate transition from nanodisks to equilibrium among vesicles and disks. Journal of Physical Chemistry B, 2004. 108(50): p. 19163-19168.
50. Grimault, A.S., et al., Modelling of the near-field of metallic nanoparticle gratings: localized surface plasmon resonance and SERS applications. Journal of Microscopy-Oxford, 2008. 229(3): p. 428-432.
51. Sanchez-Gil, J., J. Garcia-Ramos, and E. Mendez, Electromagnetic mechanism in surface-enhanced Raman scattering from Gaussian-correlated randomly rough metal substrates. Opt Express, 2002. 10(17): p. 879-86.
52. Schatz, G.C., Electrodynamics of nonspherical noble metal nanoparticles and nanoparticle aggregates. Journal of Molecular Structure-Theochem, 2001. 573: p. 73-80.
53. Michaels, A.M., M. Nirmal, and L.E. Brus, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society, 1999. 121(43): p. 9932-9939.
54. Iida, K., M. Noda, and K. Nobusada, Theoretical approach for optical response in electrochemical systems: Application to electrode potential dependence of surface-enhanced Raman scattering. Journal of Chemical Physics, 2014. 141(12).
55. Lombardi, J.R., et al., Charge-Transfer Theory of Surface Enhanced Raman-Spectroscopy - Herzberg-Teller Contributions. Journal of Chemical Physics, 1986. 84(8): p. 4174-4180.
56. Xu, G., et al., Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Applied Physics Letters, 2003. 82(22): p. 3811-3813.
57. Tillin, M.D. and J.R. Sambles, A Surface Plasmon-Polariton Study of the Dielectric-Constants of Reactive Metals - Aluminum. Thin Solid Films, 1988. 167(1-2): p. 73-83.
58. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports-Review Section of Physics Letters, 2005. 408(3-4): p. 131-314.
59. Jacak, W.A., Plasmons in Finite Spherical Electrolyte Systems: RPA Effective Jellium Model for Ionic Plasma Excitations. Plasmonics, 2016. 11(2): p. 637-651.
60. Berthold, K., R.A. Hopfel, and E. Gornik, Surface-Plasmon Polariton Enhanced Photoconductivity of Tunnel-Junctions in the Visible. Applied Physics Letters, 1985. 46(7): p. 626-628.
61. Weiss, S.J. and W.K. Kahn, Decomposition of electromagnetic boundary conditions at planar interfaces with applications to TE and TM field solutions. Ieee Transactions on Antennas and Propagation, 1998. 46(11): p. 1687-1691.
62. Ahn, B., et al., Optimization of a nanotip on a surface for the ultrafast probing of propagating surface plasmons. Optics Express, 2016. 24(1): p. 92-101.
63. Pitarke, J.M., et al., Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 2007. 70(1): p. 1-87.
64. Anpo, M., I. Tanahashi, and Y. Kubokawa, Photo-Luminescence and Photo-Reduction of V2o5 Supported on Porous Vycor Glass. Journal of Physical Chemistry, 1980. 84(25): p. 3440-3443.
65. Iwamoto, M., et al., Diffuse Reflectance Infrared and Photo-Luminescence Spectra of Surface Vanadyl Groups - Direct Evidence for Change of Bond Strength and Electronic-Structure of Metal Oxygen Bond Upon Supporting Oxide. Journal of the American Chemical Society, 1983. 105(11): p. 3719-3720.
66. Anpo, M., et al., Photoformation and Structure of O-2- and Nitrogen-Containing Anion Radicals Adsorbed on Highly Dispersed Titanium-Oxide Anchored onto Porous Vycor Glass. Journal of Physical Chemistry, 1985. 89(26): p. 5689-5694.
67. Yang, P., et al., Photoluminescence characteristics and mechanism of SrA1(2)O(4) co-doped with Eu3+ and Cu2+. Inorganic Chemistry Communications, 2002. 5(11): p. 919-923.
68. Fang, H., et al., Anomalous Dielectric Behavior in Nanostructured Alpha-Fe2o3. Physica Status Solidi B-Basic Research, 1995. 192(1): p. K11-K14.
69. Terasako, T., et al., Photoluminescence, photoacoustic and Raman spectra of zinc oxide films grown by LP-MOCVD using diethylzinc and water as precursors. Thin Solid Films, 2010. 519(5): p. 1546-1551.
Chapter 3
70. Keller, M., Progress in School of Children in a Sample of Families in the Eastern Health District of Baltimore, Maryland. Milbank Memorial Fund Quarterly, 1953. 31(4): p. 391-410.
71. Fujimori, A., et al., Neurogenic Vasodilation and Release of Calcitonin Gene-Related Peptide (Cgrp) from Perivascular Nerves in the Rat Mesenteric-Artery. Biochemical and Biophysical Research Communications, 1989. 165(3): p. 1391-1398.
72. Holmes, M.J. and B. Silverstone, Business confidence and cyclical turning points: a Markov-switching approach. Applied Economics Letters, 2010. 17(3): p. 229-233.
73. Li, F.Y., L. Zhang, and R.M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chemistry of Materials, 1998. 10(9): p. 2470-2480.
74. Li, Y.B., et al., Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006. 17(20): p. 5101-5105.
75. Hu, W.C., et al., Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate. Applied Physics Letters, 2001. 79(19): p. 3083-3085.
76. Parkhutik, V.P. and V.I. Shershulsky, Theoretical Modeling of Porous Oxide-Growth on Aluminum. Journal of Physics D-Applied Physics, 1992. 25(8): p. 1258-1263.
77. Jessensky, O., F. Muller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters, 1998. 72(10): p. 1173-1175.
Chapter 4
78. Ulrich, S., J.A. Ye, and M. Stuber, Influence of Ar-N-2 gas composition on the magnetron-sputter deposition of cubic boron nitride films. Surface & Coatings Technology, 2010. 205: p. S96-S98.
79. Pisana, S., et al., Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials, 2007. 6(3): p. 198-201.
80. Ferrari, A.C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 2007. 143(1-2): p. 47-57.
81. Mohiuddin, T.M.G., et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Physical Review B, 2009. 79(20).
Chapter 5
82. Frank, O., et al., Raman 2D-Band Splitting in Graphene: Theory and Experiment. Acs Nano, 2011. 5(3): p. 2231-2239.
83. Yoon, D., Y.W. Son, and H. Cheong, Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene. Physical Review Letters, 2011. 106(15).
84. Ni, Z.H., et al., Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. Acs Nano, 2008. 2(11): p. 2301-2305.
85. Fan, D.H., et al., Anion impurities in porous alumina membranes: Existence and functionality. Microporous and Mesoporous Materials, 2007. 100(1-3): p. 154-159.
86. Du, Y., et al., Preparation and photoluminescence of alumina membranes with ordered pore arrays. Applied Physics Letters, 1999. 74(20): p. 2951-2953.
87. Li, Y., et al., Photoluminescence and optical absorption caused by the F+ centres in anodic alumina membranes. Journal of Physics-Condensed Matter, 2001. 13(11): p. 2691-2699.
88. Chakraborty, B., et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B, 2012. 85(16).
Chapter 6
89. Lee, W. and S.J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chemical Reviews, 2014. 114(15): p. 7487-7556.