簡易檢索 / 詳目顯示

研究生: 凱利
Quiton, Khyle Glainmer N.
論文名稱: 以二氧化矽負載鐵鈷雙金屬觸媒應用於光芬頓系統並協同降解亞甲基藍
Synergistic degradation of methylene blue by novel silica-supported Fe-Co bimetallic catalyst in photo-Fenton-like system
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 143
外文關鍵詞: bimetallic catalyst, methylene blue, synergistic effect, decoloration, photo-Fenton-like, waste silica
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this present study, a fluidized-bed crystallization (FBC) process as novel method was used to fabricate bimetallic Fe-Co catalyst supported on waste silica for the photo-Fenton-like (PFL) degradation of Methylene Blue (MB) and Reactive Red 195 (RR195) dye. Under the optimum conditions of initial pH of 3.0, 3.0 mM of H2O2, and 1.0 g L-1 of FBC-derived Fe-Co/SiO2 catalyst (fFCS), the maximum response for the decoloration and mineralization efficiencies of 20 mg L-1 of MB in 60 min were 100 and 65%, respectively. Compared to the impregnated Fe-Co/SiO2 catalyst, the fFCS catalyst exhibited comparable decoloration and mineralization efficiencies, and relatively lower metal leaching for both iron and cobalt. The catalysts were characterized by Fourier Transform Infrared spectroscopy, Energy Dispersive X-ray spectroscopy and Scanning Electron Microscopy. The results show the successful incorporation of iron and cobalt on the surface of the SiO2 support material. Additive ions greatly affected MB degradation due to scavenging effect. fFCS showed poor catalytic reusability toward MB degradation and mineralization. The catalytic reusability of fFCS was improved using NaOH as a desorption agent. On the other hand, the decoloration efficiency predicted by the Box-Behnken design (BBD) model was 88.3% under the optimized operation conditions. The actual RR195 decoloration efficiency was very close to the predicted value indicating that BBD can efficiently be utilized to optimize RR195 degradation with fFCS under the PFL system. Moreover, the main reactive oxygen species involved on MB and RR195 degradation under the PFL system were O21 and •OH radicals.

    Abstract………………………………………………………………………………….....…I Acknowledgements………………...……………………...…………………………………II Table of Contents…………………………………...……………………………………....III List of Tables………………………………………………………………………….....….VI List of Figures………………………………………………………………………...……VII I Introduction……………………………...….……………………………………………...1 1.1 Background…………………………………..………………………………………....1 1.2 Research Objectives…………………………………………………..……....……...…4 1.2.1 Main Objective…………..………………………………………………………..4 1.2.2 Specific Objectives………………………………………………...…....………...5 1.3 Significance of the Study………………………………..……………………………...5 II Literature Review..…………….…………………………………….………………....…7 2.1 Unique Properties of Bimetallic Catalysts………..………………………………..…..9 2.2 Synthesis Methods……………………………….…………..…………….………….10 2.2.1 Co-precipitation………………………………………..……………………….13 2.2.2 Deposition Precipitation………….…………………………………..…...…....15 2.2.3 Plasma Spraying…………………………………………………….…...……..16 2.2.4 Impregnation………………………………..………….………...……………..18 2.2.4.1 Types of Impregnation…………………………………………………..18 2.2.4.2 Impregnation Methods………………………………………………..... 19 2.2.5 Sol-gel Method…………………………………………………….…………...20 2.2.6 Reverse Micelle Method……………………………………………………......21 2.3 Catalytic Application for Contaminant Remediation……………………………………22 2.3.1 Treatment of Organic Pollutants…………………………………………………...23 2.3.1.1 Conventional Treatment Technologies………………………………...…...24 2.3.1.2 Dye Degradation………………………………………………………….....25 2.3.1.3 Degradation of Phenol and its Derivatives…………………………….…….34 2.3.1.4 Chlorinated Organic Compounds (COCs)…………………………….……..42 2.3.2 Inorganic Pollutant Treatment……………..…………………………………...….43 2.3.2.1 Conventional Treatment Methods…………………………………………...44 2.3.2.2 Nitrate Reduction………………………………………………………….…45 2.3.2.3 Hexavalent Chromium Reduction………………………………………...…52 III Materials and Methods…….………………………………………………..………….55 3.1 Chemicals……………………….…………………………………………………...55 3.2 Preparation of Fe-Co/SiO2 Catalyst by FBC……………….………………………...56 3.3 Preparation of fFCS by Impregnation………………………………………………..57 3.4 PFL Degradation of MB and RR195 dyes……………………...………………..…..57 3.5 Box-Behnken Design Model for RR195 Degradation…………………………….....59 3.6 Evaluation of Active Species………………………………………………………...60 3.7 Analytical Methods……………………………………………………………….….61 3.8 Catalyst Characterization…………………………………………………………….61 IV Results and Discussions…………….……..…………………………………………….62 4.1 Degradation and Mineralization of MB……………………………………………...62 4.1.1 Catalytic Performance of fFCS and iFCS………………………………........62 4.1.2 Catalyst Characterization …………………………………………………....63 4.1.3 Catalytic Activity of fFCS……………………………………………….......66 4.1.4 Enhanced Catalytic Performance of fFCS……………………………….......69 4.1.5 PFL Degradation of MB……………………………………………………..71 4.1.5.1 Effect of Initial pH…………………………………………….…..…....….71 4.1.5.2 Effect of H2O2 Dosage………………………………...…….……..….…...74 4.1.5.3 Effect of Catalyst Loading………………………………………..….….…76 4.1.5.4 Effect of Light Irradiation Source…………………………………..….…..78 4.1.6 Evaluation of Active Species…………………………..……………..….......80 4.1.7 Effect of Additive Ions…………………………..……………………..….....83 4.1.8 Catalyst Reusability………………………..………………………….….......85 4.1.9 Regeneration for Catalyst Reusability………………………………….….....86 4.1.10 Homogeneous Catalytic Systems………………………………………...…88 4.2 RR195 Degradation via PFL system…………………………………...…………..…89 4.2.1 Statistical Analysis and Modeling via BBD……………………………...…...…89 4.2.2 Effects of Variables on RR195 Decoloration………...………………………….93 4.2.3 Optimization and Model Validation……………………...…………………......99 4.2.4 Evaluation of Active Species……………………………………………….….100 4.3 Plausible Degradation Mechanism for MB and RR195 Dyes……………...………..101 4.4 Feasibility of Industrial and Engineering Applications……………………………...103 V Conclusion and Recommendation….……………………………...………………..…..105 5.1 Conclusion…………………………………………………………….…………......105 5.2 Recommendation……………………………………………………....………….....106 References………………………………………………………………….……...…….…107

    [1] Y. Zhang, X. Xiong, Y. Han, X. Zhang, F. Shen, S. Deng, H. Xiao, X. Yang, G. Yang, H. Peng, Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: An overview, Chemosphere. 88 (2012) 145–154. https://doi.org/10.1016/j.chemosphere.2012.03.020.
    [2] R.M. Dalrymple, A.K. Carfagno, C.M. Sharpless, Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide, Environ. Sci. Technol. 44 (2010) 5824–5829. https://doi.org/10.1021/es101005u.
    [3] S. Su, Y. Liu, X. Liu, W. Jin, Y. Zhao, Transformation pathway and degradation mechanism of methylene blue through Β-FeOOH@GO catalyzed photo-Fenton-like system, Chemosphere. 218 (2019) 83–92. https://doi.org/10.1016/j.chemosphere.2018.11.098.
    [4] A. Tolba, M. Gar Alalm, M. Elsamadony, A. Mostafa, H. Afify, D.D. Dionysiou, Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs, Process Saf. Environ. Prot. 128 (2019) 273–283. https://doi.org/10.1016/j.psep.2019.06.011.
    [5] Y. Liu, W. Jin, Y. Zhao, G. Zhang, W. Zhang, Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions, Appl. Catal. B Environ. 206 (2017) 642–652. https://doi.org/10.1016/j.apcatb.2017.01.075.
    [6] X. Sun, D. Xu, P. Dai, X. Liu, F. Tan, Q. Guo, Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator, Chem. Eng. J. 402 (2020) 125881. https://doi.org/10.1016/j.cej.2020.125881.
    [7] R. Saleh, A. Taufik, Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites, Sep. Purif. Technol. 210 (2019) 563–573. https://doi.org/10.1016/j.seppur.2018.08.030.
    [8] P.B. Koli, K.H. Kapadnis, U.G. Deshpande, M.R. Patil, Fabrication and characterization of pure and modified Co3O4 nanocatalyst and their application for photocatalytic degradation of eosine blue dye: a comparative study, J. Nanostructure Chem. 8 (2018) 453–463. https://doi.org/10.1007/s40097-018-0287-0.
    [9] J. Hou, X. He, S. Zhang, J. Yu, M. Feng, X. Li, Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review, Sci. Total Environ. 770 (2021) 145311. https://doi.org/10.1016/j.scitotenv.2021.145311.
    [10] Á. Szegedi, M. Popova, C. Minchev, Catalytic activity of Co/MCM-41 and Co/SBA-15 materials in toluene oxidation, J. Mater. Sci. 44 (2009) 6710–6716. https://doi.org/10.1007/s10853-009-3600-y.
    [11] L. Wang, P. Jin, S. Duan, J. Huang, H. She, Q. Wang, T. An, Accelerated Fenton-like kinetics by visible-light-driven catalysis over iron(iii) porphyrin functionalized zirconium MOF: Effective promotion on the degradation of organic contaminants, Environ. Sci. Nano. 6 (2019) 2652–2661. https://doi.org/10.1039/c9en00460b.
    [12] Y. Yao, Y. Cai, G. Wu, F. Wei, X. Li, H. Chen, S. Wang, Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-Like reaction in water, J. Hazard. Mater. 296 (2015) 128–137. https://doi.org/10.1016/j.jhazmat.2015.04.014.
    [13] D. Ding, S. Yang, L. Chen, T. Cai, Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate, Chem. Eng. J. 392 (2020) 123725. https://doi.org/10.1016/j.cej.2019.123725.
    [14] T.B. Aftab, A. Hussain, D. Li, Application of a novel bimetallic hydrogel based on iron and cobalt for the synergistic catalytic degradation of Congo Red dye, J. Chinese Chem. Soc. 66 (2019) 919–927. https://doi.org/10.1002/jccs.201800388.
    [15] A.C. Pradhan, M.K. Sahoo, S. Bellamkonda, K.M. Parida, G.R. Rao, Enhanced photodegradation of dyes and mixed dyes by heterogeneous mesoporous Co-Fe/Al2O3-MCM-41 nanocomposites: Nanoparticles formation, semiconductor behavior and mesoporosity, RSC Adv. 6 (2016) 94263–94277. https://doi.org/10.1039/c6ra19923b.
    [16] Y. Duan, J. Luo, S. Zhou, X. Mao, M.W. Shah, F. Wang, Z. Chen, C. Wang, TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO, Appl. Catal. B Environ. 234 (2018) 206–212. https://doi.org/10.1016/j.apcatb.2018.04.041.
    [17] Z. Yang, X. Zhang, S. Pu, R. Ni, Y. Lin, Y. Liu, Novel Fenton-like system (Mg/Fe-O2)for degradation of 4-chlorophenol, Environ. Pollut. 250 (2019) 906–913. https://doi.org/10.1016/j.envpol.2019.04.096.
    [18] R. Priambodo, Y.L. Tan, Y.J. Shih, Y.H. Huang, Fluidized-bed crystallization of iron phosphate from solution containing phosphorus, J. Taiwan Inst. Chem. Eng. 80 (2017) 247–254. https://doi.org/10.1016/j.jtice.2017.07.004.
    [19] C.C. Su, R.R.M. Abarca, M.D.G. de Luna, M.C. Lu, Phosphate recovery from fluidized-bed wastewater by struvite crystallization technology, J. Taiwan Inst. Chem. Eng. 45 (2014) 2395–2402. https://doi.org/10.1016/j.jtice.2014.04.002.
    [20] Y.J. Shih, R.L. Huang, Y.H. Huang, Adsorptive removal of arsenic using a novel akhtenskite coated waste Goethite, J. Clean. Prod. 87 (2015) 897–905. https://doi.org/10.1016/j.jclepro.2014.10.065.
    [21] Warmadewanthi, J.C. Liu, Selective Precipitation of Phosphate from Semiconductor Wastewater, J. Environ. Eng. 135 (2009) 1063–1070. https://doi.org/10.1061/(asce)ee.1943-7870.0000054.
    [22] A.L. Forrest, K.P. Fattah, D.S. Mavinic, F.A. Koch, Optimizing Struvite Production for Phosphate Recovery in WWTP, J. Environ. Eng. 134 (2008) 395–402. https://doi.org/10.1061/(asce)0733-9372(2008)134:5(395).
    [23] J. Taghavimoghaddam, G.P. Knowles, A.L. Chaffee, Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol, J. Mol. Catal. A Chem. 358 (2012) 79–88. https://doi.org/10.1016/j.molcata.2012.02.014.
    [24] Y. Huang, F. Liu, D. Li, Degradation of tetrachloromethane and tetrachloroethene by Ni/Fe bimetallic nanoparticles, J. Phys. Conf. Ser. 188 (2009). https://doi.org/10.1088/1742-6596/188/1/012014.
    [25] J. Aluha, N. Abatzoglou, Gold-promoted plasma-synthesized Ni-Co-Fe/C catalyst for Fischer-Tropsch synthesis, Gold Bull. 50 (2017) 147–162. https://doi.org/10.1007/s13404-017-0205-0.
    [26] V. Uskoković, M. Drofenik, Synthesis of materials within reverse micelles, Surf. Rev. Lett. 12 (2005) 239–277. https://doi.org/10.1142/S0218625X05007001.
    [27] M. Fu, C. Li, P. Lu, L. Qu, M. Zhang, Y. Zhou, M. Yu, Y. Fang, A review on selective catalytic reduction of NOx by supported catalysts at 100-300°C - Catalysts, mechanism, kinetics, Catal. Sci. Technol. 4 (2014) 14–25. https://doi.org/10.1039/c3cy00414g.
    [28] F. Fu, Z. Cheng, J. Lu, Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: A review, RSC Adv. 5 (2015) 85395–85409. https://doi.org/10.1039/c5ra13067k.
    [29] C.S.D. Rodrigues, R.M. Silva, S.A.C. Carabineiro, F.J. Maldonado-Hódar, L.M. Madeira, Wastewater treatment by catalytic wet peroxidation using nano gold-based catalysts: A review, Catalysts. 9 (2019). https://doi.org/10.3390/catal9050478.
    [30] T. Al-Khalid, M.H. El-Naas, Aerobic biodegradation of phenols: A comprehensive review, Crit. Rev. Environ. Sci. Technol. 42 (2012) 1631–1690. https://doi.org/10.1080/10643389.2011.569872.
    [31] C. Lavanya, R. Dhankar, S. Chhikara, S. Sheoran, Review Article Degradation of Toxic Dyes : A Review, Int. J. Curr. Microbiol. Appl. Sci. 3 (2014) 189–199.
    [32] A. Pandya, C. Pandya, B. Dave, International Journal of Advance Engineering and Research Biodegradation Of Toxic Dyes And Textile Dye Effluent – A Review, (2018) 1246–1249.
    [33] D. Yuan, X. Gong, R. Wu, Ensemble effects on ethylene dehydrogenation on PdAu(001) surfaces investigated with first-principles calculations and nudged-elastic-band simulations, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 3–6. https://doi.org/10.1103/PhysRevB.75.233401.
    [34] S. Ali, N.A. Mohd Zabidi, D. Subbarao, Synthesis and characterization of bimetallic Fe/Co nanocatalyst on CNTs for Fischer-Tropsch reaction, J. Nano Res. 16 (2012) 9–14. https://doi.org/10.4028/www.scientific.net/JNanoR.16.9.
    [35] F. Tao, S. Zhang, N. Luan, X. Zhang, Action of bimetallic nanocatalysts under reaction conditions and during catalysis: Evolution of chemistry from high vacuum conditions to reaction conditions, Chem. Soc. Rev. 41 (2012) 7980–7993. https://doi.org/10.1039/c2cs35185d.
    [36] F. Liao, T.W.B. Lo, S.C.E. Tsang, Recent Developments in Palladium-Based Bimetallic Catalysts, ChemCatChem. 7 (2015) 1998–2014. https://doi.org/10.1002/cctc.201500245.
    [37] D.J. Duvenhage, N.J. Coville, Fe:Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction: Part 3: The effect of Fe:Co ratio, mixing and loading on FT product selectivity, Appl. Catal. A Gen. 289 (2005) 231–239. https://doi.org/10.1016/j.apcata.2005.05.008.
    [38] N.M. Deraz, The comparative jurisprudence of catalysts preparation methods: I. precipitation and impregnation methods., J. Ind. Environ. Chem. 2 (2018) 19–21.
    [39] K. Silas, W.A.W.A.K. Ghani, T.S.Y. Choong, U. Rashid, Breakthrough studies of Co3O4 supported activated carbon monolith for simultaneous SO2/NOx removal from flue gas, Fuel Process. Technol. 180 (2018) 155–165. https://doi.org/10.1016/j.fuproc.2018.08.018.
    [40] J. Aluha, K. Bere, N. Abatzoglou, F. Gitzhofer, Synthesis of Nano-catalysts by Induction Suspension Plasma Technology (SPS) for Fischer–Tropsch Reaction, Plasma Chem. Plasma Process. 36 (2016) 1325–1348. https://doi.org/10.1007/s11090-016-9734-1.
    [41] J. Aluha, N. Abatzoglou, Promotional effect of Mo and Ni in plasma-synthesized Co–Fe/C bimetallic nano-catalysts for Fischer–Tropsch synthesis, J. Ind. Eng. Chem. 50 (2017) 199–212. https://doi.org/10.1016/j.jiec.2017.02.018.
    [42] R.D. Gonzalez, T. Lopez, R. Gomez, Sol-gel preparation of supported metal catalysts, Catal. Today. 35 (1997) 293–317. https://doi.org/10.1016/S0920-5861(96)00162-9.
    [43] P. Munnik, P.E. De Jongh, K.P. De Jong, Recent Developments in the Synthesis of Supported Catalysts, Chem. Rev. 115 (2015) 6687–6718. https://doi.org/10.1021/cr500486u.
    [44] F. Pinna, Supported metal catalysts preparation, Catal. Today. 41 (1998) 129–137. https://doi.org/10.1016/S0920-5861(98)00043-1.
    [45] C. Perego, P. Villa, Catalyst preparation methods, Catal. Today. 34 (1997) 281–305. https://doi.org/10.1016/S0920-5861(96)00055-7.
    [46] M.K. Van Der Lee, A. Van Jos Dillen, J.H. Bitter, K.P. De Jong, Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts, J. Am. Chem. Soc. 127 (2005) 13573–13582. https://doi.org/10.1021/ja053038q.
    [47] A. Sandoval, A. Aguilar, C. Louis, A. Traverse, R. Zanella, Bimetallic Au-Ag/TiO2 catalyst prepared by deposition- precipitation: High activity and stability in CO oxidation, J. Catal. 281 (2011) 40–49. https://doi.org/10.1016/j.jcat.2011.04.003.
    [48] A. Sandoval, C. Louis, R. Zanella, Improved activity and stability in CO oxidation of bimetallic Au-Cu/TiO2 catalysts prepared by deposition-precipitation with urea, Appl. Catal. B Environ. 140–141 (2013) 363–377. https://doi.org/10.1016/j.apcatb.2013.04.039.
    [49] Z.S. Wei, H.Q. Li, J.C. He, Q.H. Ye, Q.R. Huang, Y.W. Luo, Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process, Bioresour. Technol. 146 (2013) 451–456. https://doi.org/10.1016/j.biortech.2013.07.114.
    [50] Y.S. Mok, D.H. Kim, Treatment of toluene by using adsorption and nonthermal plasma oxidation process, Curr. Appl. Phys. 11 (2011) S58–S62. https://doi.org/10.1016/j.cap.2011.05.023.
    [51] E.C. Neyts, Plasma-Surface Interactions in Plasma Catalysis, Plasma Chem. Plasma Process. 36 (2016) 185–212. https://doi.org/10.1007/s11090-015-9662-5.
    [52] H. Puliyalil, D. Lašič Jurković, V.D.B.C. Dasireddy, B. Likozar, A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels, RSC Adv. 8 (2018) 27481–27508. https://doi.org/10.1039/c8ra03146k.
    [53] H.H. Kim, Y. Teramoto, A. Ogata, H. Takagi, T. Nanba, Plasma Catalysis for Environmental Treatment and Energy Applications, Plasma Chem. Plasma Process. 36 (2016) 45–72. https://doi.org/10.1007/s11090-015-9652-7.
    [54] C.J. Liu, G.P. Vissokov, B.W.L. Jang, Catalyst preparation using plasma technologies, Catal. Today. 72 (2002) 173–184. https://doi.org/10.1016/S0920-5861(01)00491-6.
    [55] M.B. Kizling, S.G. Järås, A review of the use of plasma techniques in catalyst preparation and catalytic reactions, Appl. Catal. A Gen. 147 (1996) 1–21. https://doi.org/10.1016/S0926-860X(96)00215-3.
    [56] Z.R. Ismagilov, O.Y. Podyacheva, O.P. Solonenko, V. V. Pushkarev, V.I. Kuz’min, V.A. Ushakov, N.A. Rudina, Application of plasma spraying in the preparation of metal-supported catalysts, Catal. Today. 51 (1999) 411–417. https://doi.org/10.1016/S0920-5861(99)00030-9.
    [57] W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts, Chem. Rev. 112 (2012) 5780–5817. https://doi.org/10.1021/cr300096b.
    [58] K. Rida, A. López Cámara, M.A. Peña, C.L. Bolívar-Díaz, A. Martínez-Arias, Bimetallic Co-Fe and Co-Cr oxide systems supported on CeO2: Characterization and CO oxidation catalytic behaviour, Int. J. Hydrogen Energy. 40 (2014) 11267–11278. https://doi.org/10.1016/j.ijhydene.2015.03.044.
    [59] C. Louis, Chemical preparation of supported bimetallic catalysts. Gold-based bimetallic, a case study, Catalysts. 6 (2016). https://doi.org/10.3390/catal6080110.
    [60] K.Y. Tran, B. Heinrichs, J.F. Colomer, J.P. Pirard, S. Lambert, Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe-Co/Al2O3 sol-gel catalysts, Appl. Catal. A Gen. 318 (2007) 63–69. https://doi.org/10.1016/j.apcata.2006.10.042.
    [61] A.F. Sierra-Salazar, A. Ayral, T. Chave, V. Hulea, S.I. Nikitenko, S. Abate, S. Perathoner, P. Lacroix-Desmazes, Unconventional Pathways for Designing Silica-Supported Pt and Pd Catalysts with Hierarchical Porosity, Stud. Surf. Sci. Catal. 178 (2019) 377–397. https://doi.org/10.1016/B978-0-444-64127-4.00018-5.
    [62] N.A. Mohd Zabidi, M.N.A. Abdul Aziz, S. Ali, M.F. Taha, Synthesis and characterization of Fe-Co catalyst prepared via reverse microemulsion method, AIP Conf. Proc. 1482 (2012) 590–594. https://doi.org/10.1063/1.4757540.
    [63] J.M. Wu, W. Wen, Catalyzed degradation of azo dyes under ambient conditions, Environ. Sci. Technol. 44 (2010) 9123–9127. https://doi.org/10.1021/es1027234.
    [64] N. Riaz, B.K. Dutta, M.S. Khan, E. Nurlaela, A. Dhabi, Photocatalytic Degradation of Orange II using Bimetallic Cu-Ni / TiO 2 Photocatalysts, 1 (2012) 1–5.
    [65] S. Jiang, H. Zhang, Y. Yan, X. Zhang, Preparation and characterization of porous Fe-Cu mixed oxides modified ZSM-5 coating/PSSF for continuous degradation of phenol wastewater, Microporous Mesoporous Mater. 240 (2017) 108–116. https://doi.org/10.1016/j.micromeso.2016.11.020.
    [66] M. Rani, U. Shanker, Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures, Colloids Surfaces A Physicochem. Eng. Asp. 553 (2018) 546–561. https://doi.org/10.1016/j.colsurfa.2018.05.071.
    [67] L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A Short Review of Techniques for Phenol Removal from Wastewater, Curr. Pollut. Reports. 2 (2016) 157–167. https://doi.org/10.1007/s40726-016-0035-3.
    [68] D.N. Jadhav, A.K. Vanjara, Removal of phenol from wastewater using sawdust, polymerized sawdust and sawdust carbon, Indian J. Chem. Technol. 11 (2004) 35–41.
    [69] X. Wang, C. Chen, Y. Chang, H. Liu, Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles, J. Hazard. Mater. 161 (2009) 815–823. https://doi.org/10.1016/j.jhazmat.2008.04.027.
    [70] X. Xu, M. Zhou, P. He, Z. Hao, Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water, J. Hazard. Mater. 123 (2005) 89–93. https://doi.org/10.1016/j.jhazmat.2005.04.002.
    [71] X. Xu, H. Zhou, P. He, D. Wang, Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts, Chemosphere. 58 (2005) 1135–1140. https://doi.org/10.1016/j.chemosphere.2004.07.010.
    [72] D.K. Lee, I.C. Cho, G.S. Lee, S.C. Kim, D.S. Kim, Y.K. Yang, Catalytic wet oxidation of reactive dyes with H2/O2 mixture on Pd-Pt/Al2O3 catalysts, Sep. Purif. Technol. 34 (2004) 43–50. https://doi.org/10.1016/S1383-5866(03)00173-4.
    [73] N. Ezzatahmadi, T. Bao, H. Liu, G.J. Millar, G.A. Ayoko, J. Zhu, R. Zhu, X. Liang, H. He, Y. Xi, Catalytic degradation of Orange II in aqueous solution using diatomite-supported bimetallic Fe/Ni nanoparticles, RSC Adv. 8 (2018) 7687–7696. https://doi.org/10.1039/c7ra13348k.
    [74] S.P. Ghuge, A.K. Saroha, Catalytic ozonation of dye industry effluent using mesoporous bimetallic Ru-Cu/SBA-15 catalyst, Process Saf. Environ. Prot. 118 (2018) 125–132. https://doi.org/10.1016/j.psep.2018.06.033.
    [75] F. Duarte, F.J. Maldonado-Hódar, A.F. Pérez-Cadenas, L.M. Madeira, Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels, Appl. Catal. B Environ. 85 (2009) 139–147. https://doi.org/10.1016/j.apcatb.2008.07.006.
    [76] Y. Li, A. Jawad, A. Khan, X. Lu, Z. Chen, W. Liu, G. Yin, Synergistic degradation of phenols by bimetallic CuO-Co3O4@γ-Al2O3 catalyst in H2O2/HCO3- system, Cuihua Xuebao/Chinese J. Catal. 37 (2016) 963–970. https://doi.org/10.1016/S1872-2067(15)61092-0.
    [77] L.F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity, J. Hazard. Mater. 162 (2009) 588–606. https://doi.org/10.1016/j.jhazmat.2008.05.115.
    [78] B.I. Dvorak, D.F. Lawler, G.E. Speitel, D.L. Jones, D.A. Boadway, Selecting among physical/chemical processes for removing synthetic organics from water, Water Environ. Res. 65 (1993) 827–838. https://doi.org/10.2175/wer.65.7.4.
    [79] E. Tütem, R. Apak, Ç.F. Ünal, Adsorptive removal of chlorophenols from water by bituminous shale, Water Res. 32 (1998) 2315–2324. https://doi.org/10.1016/S0043-1354(97)00476-4.
    [80] G.W. Strandberg, T.L. Donaldson, L.L. Farr, Degradation of Trichloroethylene and trans-1,2-Dichloroethylene by a Methanotrophic Consortium in a Fixed-Film, Packed-Bed Bioreactor, Environ. Sci. Technol. 23 (1989) 1422–1425. https://doi.org/10.1021/es00069a016.
    [81] T.J. Phelps, J.J. Niedzielski, K.J. Malachowsky, R.M. Schram, S.E. Herbes, D.C. White, Biodegradation of Mixed-Organic Wastes by Microbial Consortia in Continuous-Recycle Expanded-Bed Bioreactors, Environ. Sci. Technol. 25 (1991) 1461–1465. https://doi.org/10.1021/es00020a015.
    [82] K. Broholm, T.H. Christensen, B.K. Jensen, Different abilities of eight mixed cultures of methane-oxidizing bacteria to degrade TCE, Water Res. 27 (1993) 215–224. https://doi.org/10.1016/0043-1354(93)90078-V.
    [83] M. Trapido, Y. Veressinina, R. Munter, Advanced oxidation processes for degradation of 2,4-dichlo- and 2,4-dimethylphenol, J. Environ. Eng. 124 (1998) 690–694. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(690).
    [84] P. Kim, Y. Kim, T. Kang, I.K. Song, J. Yi, Preparation of nickel-mesoporous materials and their application to the hydrodechlorination of chlorinated organic compounds, Catal. Surv. from Asia. 11 (2007) 49–58. https://doi.org/10.1007/s10563-007-9017-1.
    [85] X. Wang, C. Chen, H. Liu, J. Ma, Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles, Ind. Eng. Chem. Res. 47 (2008) 8645–8651. https://doi.org/10.1021/ie701762d.
    [86] A.D. Bokare, R.C. Chikate, C. V. Rode, K.M. Paknikar, Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation, Environ. Sci. Technol. 41 (2007) 7437–7443. https://doi.org/10.1021/es071107q.
    [87] X. Li, W. Liu, J. Ma, Y. Wen, Z. Wu, High catalytic activity of magnetic FeO<inf>x</inf>/NiO<inf>y</inf>/SBA-15: The role of Ni in the bimetallic oxides at the nanometer level, Appl. Catal. B Environ. 179 (2015) 239–248. https://doi.org/10.1016/j.apcatb.2015.05.034.
    [88] N. Riaz, M.A. Bustam, F.K. Chong, Z.B. Man, M.S. Khan, A.M. Shariff, Photocatalytic degradation of DIPA using bimetallic cu-ni/tio2 photocatalyst under visible light irradiation, Sci. World J. 2014 (2014). https://doi.org/10.1155/2014/342020.
    [89] M. Dükkanci, G. Gündüz, S. Yilmaz, Y.C. Yaman, R. V. Prikhod’ko, I. V. Stolyarova, Characterization and catalytic activity of CuFeZSM-5 catalysts for oxidative degradation of Rhodamine 6G in aqueous solutions, Appl. Catal. B Environ. 95 (2010) 270–278. https://doi.org/10.1016/j.apcatb.2010.01.004.
    [90] S. Balachandran, M. Swaminathan, Superior photocatalytic activity of bimetallic Cd-Ag-ZnO for the degradation of azo dyes under UV light, Emerg. Mater. Res. 1 (2012) 157–163. https://doi.org/10.1680/emr.11.00025.
    [91] M. Zhao, T.L. Church, A.T. Harris, SBA-15 supported Ni-Co bimetallic catalysts for enhanced hydrogen production during cellulose decomposition, Appl. Catal. B Environ. 101 (2011) 522–530. https://doi.org/10.1016/j.apcatb.2010.10.024.
    [92] Y. Ahmed, Z. Yaakob, P. Akhtar, Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation, Catal. Sci. Technol. 6 (2016) 1222–1232. https://doi.org/10.1039/c5cy01494h.
    [93] C. Cai, H. Zhang, X. Zhong, L. Hou, Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater. 283 (2015) 70–79. https://doi.org/10.1016/j.jhazmat.2014.08.053.
    [94] M. Ismail, M.I. Khan, S.B. Khan, M.A. Khan, K. Akhtar, A.M. Asiri, Green synthesis of plant supported Cu–Ag and Cu–Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment, J. Mol. Liq. 260 (2018) 78–91. https://doi.org/10.1016/j.molliq.2018.03.058.
    [95] X. Liu, Z. Chen, Z. Chen, M. Megharaj, R. Naidu, Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles, Chem. Eng. J. 223 (2013) 764–771. https://doi.org/10.1016/j.cej.2013.03.002.
    [96] S.A. Hameed, Photo-Degradation of Vat Dye by Bimetallic Photo-Catalysts (Cu-Ni/ Tio2 and Cu-Ni/ Zno) Under UV and Visible Light Sources, IOSR J. Environ. Sci. 10 (2016) 1–05. https://doi.org/10.9790/2402-1004020105.
    [97] J. Wang, C. Liu, L. Tong, J. Li, R. Luo, J. Qi, Y. Li, L. Wang, Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: An effective heterogeneous Fenton catalyst for orange II degradation, RSC Adv. 5 (2015) 69593–69605. https://doi.org/10.1039/c5ra10826h.
    [98] J. Wang, C. Liu, I. Hussain, C. Li, J. Li, X. Sun, J. Shen, RSC Advances hollow mesoporous silica spheres : the e ff ect of Fe / Cu ratio on heterogeneous Fenton degradation of, (2016) 54623–54635. https://doi.org/10.1039/c6ra08501f.
    [99] J. Wang, C. Liu, J. Li, R. Luo, X. Hu, X. Sun, J. Shen, W. Han, L. Wang, In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst, Appl. Catal. B Environ. 207 (2017) 316–325. https://doi.org/10.1016/j.apcatb.2017.02.032.
    [100] A.C.K. Yip, F. Leung-Yuk Lam, X. Hu, Novel bimetallic catalyst for the photo-assisted degradation of Acid Black 1 over a broad range of pH, Chem. Eng. Sci. 62 (2007) 5150–5153. https://doi.org/10.1016/j.ces.2007.01.014.
    [101] Y. Dong, Z. Han, S. Dong, J. Wu, Z. Ding, Enhanced catalytic activity of Fe bimetallic modified PAN fiber complexes prepared with different assisted metal ions for degradation of organic dye, Catal. Today. 175 (2011) 299–309. https://doi.org/10.1016/j.cattod.2011.04.026.
    [102] S. Tang, D. Yuan, Q. Zhang, Y. Liu, Q. Zhang, Z. Liu, H. Huang, Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation, Environ. Sci. Pollut. Res. 23 (2016) 18800–18808. https://doi.org/10.1007/s11356-016-7030-5.
    [103] L. Hao, D. Huiping, S. Jun, Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons, J. Mol. Catal. A Chem. 363–364 (2012) 101–107. https://doi.org/10.1016/j.molcata.2012.05.022.
    [104] A.D. Bokare, R.C. Chikate, C. V. Rode, K.M. Paknikar, Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution, Appl. Catal. B Environ. 79 (2008) 270–278. https://doi.org/10.1016/j.apcatb.2007.10.033.
    [105] S.L. Foster, K. Estoque, M. Voecks, N. Rentz, L.F. Greenlee, Removal of synthetic azo dye using bimetallic nickel-iron nanoparticles, J. Nanomater. 2019 (2019). https://doi.org/10.1155/2019/9807605.
    [106] Y. Yuan, H. Li, B. Lai, P. Yang, M. Gou, Y. Zhou, G. Sun, Removal of high-concentration C.I. acid orange 7 from aqueous solution by zerovalent iron/copper (Fe/Cu) bimetallic particles, Ind. Eng. Chem. Res. 53 (2014) 2605–2613. https://doi.org/10.1021/ie402739s.
    [107] Q. Wu, M.S. Siddique, W. Yu, Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies, J. Hazard. Mater. 401 (2021) 123261. https://doi.org/10.1016/j.jhazmat.2020.123261.
    [108] Z. Oruç, M. Ergüt, D. Uzunoǧlu, A. Özer, Green synthesis of biomass-derived activated carbon/Fe-Zn bimetallic nanoparticles from lemon (Citrus limon (L.) Burm. f.) wastes for heterogeneous Fenton-like decolorization of Reactive Red 2, J. Environ. Chem. Eng. 7 (2019). https://doi.org/10.1016/j.jece.2019.103231.
    [109] L. Chen, X. Jiang, R. Xie, Y. Zhang, Y. Jin, W. Jiang, A novel porous biochar-supported Fe-Mn composite as a persulfate activator for the removal of acid red 88, Sep. Purif. Technol. 250 (2020) 117232. https://doi.org/10.1016/j.seppur.2020.117232.
    [110] L.A. Wali, A.M. Alwan, A.B. Dheyab, D.A. Hashim, Excellent fabrication of Pd-Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation, Optik (Stuttg). 179 (2019) 708–717. https://doi.org/10.1016/j.ijleo.2018.11.011.
    [111] P. Wang, Y.N. Liang, Z. Zhong, X. Hu, Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes, Sep. Purif. Technol. 233 (2020) 115960. https://doi.org/10.1016/j.seppur.2019.115960.
    [112] Y. Guo, O.A. Zelekew, H. Sun, D.H. Kuo, J. Lin, X. Chen, Catalytic reduction of organic and hexavalent chromium pollutants with highly active bimetal CuBiOS oxysulfide catalyst under dark, Sep. Purif. Technol. 242 (2020) 116769. https://doi.org/10.1016/j.seppur.2020.116769.
    [113] A. Vinotha Alex, N. Chandrasekaran, A. Mukherjee, Novel enzymatic synthesis of core/shell AgNP/AuNC bimetallic nanostructure and its catalytic applications, J. Mol. Liq. 301 (2020) 112463. https://doi.org/10.1016/j.molliq.2020.112463.
    [114] H.-T.T. Nguyen, V.-P. Dinh, Q.-A.N. Phan, V.A. Tran, V.-D. Doan, T. Lee, T.D. Nguyen, Bimetallic Al/Fe Metal-Organic Framework for highly efficient photo-Fenton degradation of rhodamine B under visible light irradiation, Mater. Lett. 279 (2020) 128482. https://doi.org/10.1016/j.matlet.2020.128482.
    [115] J. Wang, C. Liu, J. Feng, D. Cheng, C. Zhang, Y. Yao, Z. Gu, W. Hu, J. Wan, C. Yu, MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts, J. Hazard. Mater. 394 (2020) 122567. https://doi.org/10.1016/j.jhazmat.2020.122567.
    [116] H. Sun, A.B. Abdeta, O.A. Zelekew, Y. Guo, J. Zhang, D.H. Kuo, J. Lin, X. Chen, Spherical porous SiO2 supported CuVOS catalyst with an efficient catalytic reduction of pollutants under dark condition, J. Mol. Liq. 313 (2020) 113567. https://doi.org/10.1016/j.molliq.2020.113567.
    [117] A. Khan, Z. Liao, Y. Liu, A. Jawad, J. Ifthikar, Z. Chen, Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst, J. Hazard. Mater. 329 (2017) 262–271. https://doi.org/10.1016/j.jhazmat.2017.01.029.
    [118] Q. Sun, M. Liu, K. Li, Y. Han, Y. Zuo, F. Chai, C. Song, G. Zhang, X. Guo, Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions, Inorg. Chem. Front. 4 (2017) 144–153. https://doi.org/10.1039/c6qi00441e.
    [119] A. Cybula, G. Nowaczyk, M. Jarek, A. Zaleska, Preparation and characterization of Au/Pd Modified-TiO2 photocatalysts for phenol and toluene degradation under visible light - The effect of calcination temperature, J. Nanomater. 2014 (2014). https://doi.org/10.1155/2014/918607.
    [120] M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/γ-Al2O3 catalyst, Water Res. 47 (2013) 3070–3080. https://doi.org/10.1016/j.watres.2013.03.024.
    [121] A. Li, K. Shen, J. Chen, Z. Li, Y. Li, Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts, Chem. Eng. Sci. 166 (2017) 66–76. https://doi.org/10.1016/j.ces.2017.03.027.
    [122] E.G. Garrido-Ramírez, J.F. Marco, N. Escalona, M.S. Ureta-Zañartu, Preparation and characterization of bimetallic Fe-Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction, Microporous Mesoporous Mater. 225 (2016) 303–311. https://doi.org/10.1016/j.micromeso.2016.01.013.
    [123] C. Dai, A. Zhang, L. Luo, X. Zhang, M. Liu, J. Wang, X. Guo, C. Song, Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation, Catal. Today. 297 (2017) 335–343. https://doi.org/10.1016/j.cattod.2017.02.001.
    [124] M. Xia, M. Long, Y. Yang, C. Chen, W. Cai, B. Zhou, A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution, Appl. Catal. B Environ. 110 (2011) 118–125. https://doi.org/10.1016/j.apcatb.2011.08.033.
    [125] Z. Hai, N. El Kolli, D.B. Uribe, P. Beaunier, M. José-Yacaman, J. Vigneron, A. Etcheberry, S. Sorgues, C. Colbeau-Justin, J. Chen, H. Remita, Modification of TiO2 by bimetallic Au-Cu nanoparticles for wastewater treatment, J. Mater. Chem. A. 1 (2013) 10829–10835. https://doi.org/10.1039/c3ta11684k.
    [126] M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Improved Γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols, Appl. Catal. A Gen. 488 (2014) 78–85. https://doi.org/10.1016/j.apcata.2014.09.035.
    [127] S.S. Zhang, N. Yang, X. Zhuang, L. Ren, V. Natarajan, Z. Cui, H. Si, X. Xin, S.Q. Ni, J. Zhan, Montmorillonite immobilized Fe/Ni bimetallic prepared by dry in-situ hydrogen reduction for the degradation of 4-Chlorophenlo, Sci. Rep. 9 (2019) 1–9. https://doi.org/10.1038/s41598-019-49349-w.
    [128] Z. Zhang, Q. Shen, N. Cissoko, J. Wo, X. Xu, Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid, J. Hazard. Mater. 182 (2010) 252–258. https://doi.org/10.1016/j.jhazmat.2010.06.022.
    [129] J. Wei, X. Xu, Y. Liu, D. Wang, Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters, Water Res. 40 (2006) 348–354. https://doi.org/10.1016/j.watres.2005.10.017.
    [130] I.A. Witońska, M.J. Walock, M. Binczarski, M. Lesiak, A. V. Stanishevsky, S. Karski, Pd-Fe/SiO2 and Pd-Fe/Al2O3 catalysts for selective hydrodechlorination of 2,4-dichlorophenol into phenol, J. Mol. Catal. A Chem. 393 (2014) 248–256. https://doi.org/10.1016/j.molcata.2014.06.022.
    [131] L. Fang, C. Xu, W. Zhang, L.Z. Huang, The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: Performance and mechanism study, Appl. Surf. Sci. 435 (2018) 55–64. https://doi.org/10.1016/j.apsusc.2017.11.084.
    [132] J. Su, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Dechlorination of p-chlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles: Synthesis, characterization and kinetics, Desalination. 280 (2011) 167–173. https://doi.org/10.1016/j.desal.2011.06.067.
    [133] G.N. Jovanovic, P.Ž. Plazl, P. Sakrittichai, K. Al-Khaldi, Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst, Ind. Eng. Chem. Res. 44 (2005) 5099–5106. https://doi.org/10.1021/ie049496+.
    [134] Y. Zhou, Y. Kuang, W. Li, Z. Chen, M. Megharaj, R. Naidu, A combination of bentonite-supported bimetallic Fe/Pd nanoparticles and biodegradation for the remediation of p-chlorophenol in wastewater, Chem. Eng. J. 223 (2013) 68–75. https://doi.org/10.1016/j.cej.2013.02.118.
    [135] B. Lai, Y. Zhang, Z. Chen, P. Yang, Y. Zhou, J. Wang, Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles, Appl. Catal. B Environ. 144 (2014) 816–830. https://doi.org/10.1016/j.apcatb.2013.08.020.
    [136] S. Patnaik, D.P. Sahoo, K.M. Parida, Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified g-C3N4 for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium, J. Colloid Interface Sci. 560 (2020) 519–535. https://doi.org/10.1016/j.jcis.2019.09.041.
    [137] N. Ezzatahmadi, D.L. Marshall, K. Hou, G.A. Ayoko, G.J. Millar, Y. Xi, Simultaneous adsorption and degradation of 2,4-dichlorophenol on sepiolite-supported bimetallic Fe/Ni nanoparticles, J. Environ. Chem. Eng. 7 (2019) 102955. https://doi.org/10.1016/j.jece.2019.102955.
    [138] N. Ezzatahmadi, G.J. Millar, G.A. Ayoko, J. Zhu, R. Zhu, X. Liang, H. He, Y. Xi, Degradation of 2,4-dichlorophenol using palygorskite-supported bimetallic Fe/Ni nanocomposite as a heterogeneous catalyst, Appl. Clay Sci. 168 (2019) 276–286. https://doi.org/10.1016/j.clay.2018.11.030.
    [139] L. Huang, L. Zhang, D. Li, Q. Xin, R. Jiao, X. Hou, Y. Zhang, H. Li, Enhanced phenol degradation at near neutral pH achieved by core-shell hierarchical 4A zeolite/Fe@Cu catalyst, J. Environ. Chem. Eng. 8 (2020) 103933. https://doi.org/10.1016/j.jece.2020.103933.
    [140] L. Xu, L. Zhao, Y. Mao, Z. Zhou, D. Wu, Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@zeolite: Critical role of Cu(I) and superoxide radical, Sep. Purif. Technol. 253 (2020) 117550. https://doi.org/10.1016/j.seppur.2020.117550.
    [141] L. Hu, G. Zhang, M. Liu, Q. Wang, S. Dong, P. Wang, Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation, Sci. Total Environ. 647 (2019) 352–361. https://doi.org/10.1016/j.scitotenv.2018.08.003.
    [142] W. Zhang, H. Zhang, X. Yan, M. Zhang, R. Luo, J. Qi, X. Sun, J. Shen, W. Han, L. Wang, J. Li, Controlled synthesis of bimetallic Prussian blue analogues to activate peroxymonosulfate for efficient bisphenol A degradation, J. Hazard. Mater. 387 (2020) 121701. https://doi.org/10.1016/j.jhazmat.2019.121701.
    [143] L. Li, H. Wu, H. Chen, J. Zhang, X. Xu, S. Wang, S. Wang, H. Sun, Heterogeneous activation of peroxymonosulfate by hierarchically porous cobalt/iron bimetallic oxide nanosheets for degradation of phenol solutions, Chemosphere. 256 (2020) 127160. https://doi.org/10.1016/j.chemosphere.2020.127160.
    [144] Y. Ma, K. Hu, Y. Sun, K. Iqbal, Z. Bai, C. Wang, X. Jia, W. Ye, N-doped carbon coated Mn3O4/PdCu nanocomposite as a high-performance catalyst for 4-nitrophenol reduction, Sci. Total Environ. 696 (2019) 134013. https://doi.org/10.1016/j.scitotenv.2019.134013.
    [145] Q. Yan, X. Wang, J. Feng, L. Mei, A. Wang, Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods : A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B, J. Colloid Interface Sci. (2020). https://doi.org/10.1016/j.jcis.2020.08.062.
    [146] V.K. Harika, H.K. Sadhanala, I. Perelshtein, A. Gedanken, Sonication-Assisted Synthesis of Bimetallic Hg/Pd Alloy Nanoparticles for Catalytic Reduction of Nitrophenol and its Derivatives, Ultrason. Sonochem. 60 (2020) 104804. https://doi.org/10.1016/j.ultsonch.2019.104804.
    [147] Y. Wang, Q. Li, P. Zhang, D. O’Connor, R.S. Varma, M. Yu, D. Hou, One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol, J. Colloid Interface Sci. 539 (2019) 161–167. https://doi.org/10.1016/j.jcis.2018.12.053.
    [148] X. Yan, D. Yue, C. Guo, S. Wang, X. Qian, Y. Zhao, Effective removal of chlorinated organic pollutants by bimetallic iron-nickel sulfide activation of peroxydisulfate, Chinese Chem. Lett. 31 (2020) 1535–1539. https://doi.org/10.1016/j.cclet.2019.11.003.
    [149] Y. Han, C. Liu, J. Horita, W. Yan, Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: Solute-induced catalyst deactivation analyzed by carbon isotope fractionation, Appl. Catal. B Environ. 188 (2016) 77–86. https://doi.org/10.1016/j.apcatb.2016.01.047.
    [150] M.O. Nutt, K.N. Heck, P. Alvarez, M.S. Wong, Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination, Appl. Catal. B Environ. 69 (2006) 115–125. https://doi.org/10.1016/j.apcatb.2006.06.005.
    [151] Q. Huang, W. Liu, P. Peng, W. Huang, Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts, J. Hazard. Mater. 262 (2013) 634–641. https://doi.org/10.1016/j.jhazmat.2013.09.015.
    [152] P. Te Chiueh, Y.H. Lee, C.Y. Su, S.L. Lo, Assessing the environmental impact of five Pd-based catalytic technologies in removing of nitrates, J. Hazard. Mater. 192 (2011) 837–845. https://doi.org/10.1016/j.jhazmat.2011.05.096.
    [153] N. Barrabés, J. Sá, Catalytic nitrate removal from water, past, present and future perspectives, Appl. Catal. B Environ. 104 (2011) 1–5. https://doi.org/10.1016/j.apcatb.2011.03.011.
    [154] Y. Yao, J. Zhang, H. Chen, M. Yu, M. Gao, Y. Hu, S. Wang, Ni 0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium, Appl. Surf. Sci. 440 (2018) 421–431. https://doi.org/10.1016/j.apsusc.2018.01.123.
    [155] S.S. Chen, Y.C. Huang, T.Y. Chen, Reduction of hexavalent chromium in water using iron-aluminum bimetallic particles, Adv. Mater. Res. 849 (2014) 142–146. https://doi.org/10.4028/www.scientific.net/AMR.849.142.
    [156] D. Shi, Z. Ouyang, Y. Zhao, J. Xiong, X. Shi, Catalytic reduction of hexavalent chromium using iron/palladium bimetallic nanoparticle-assembled filter paper, Nanomaterials. 9 (2019). https://doi.org/10.3390/nano9081183.
    [157] P.B. Vilela, A. Dalalibera, E.C. Duminelli, V.A. Becegato, A.T. Paulino, Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel, Environ. Sci. Pollut. Res. 26 (2019) 28481–28489. https://doi.org/10.1007/s11356-018-3208-3.
    [158] K.P. Singh, A.K. Singh, S. Gupta, S. Sinha, Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach, Desalination. 270 (2011) 275–284. https://doi.org/10.1016/j.desal.2010.11.056.
    [159] K.G. Quiton, B. Doma, C.M. Futalan, M.W. Wan, Removal of chromium(VI) and zinc(II) from aqueous solution using kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcus epidermidis, Sustain. Environ. Res. 28 (2018) 206–213. https://doi.org/10.1016/j.serj.2018.04.002.
    [160] A. Alemu, B. Lemma, N. Gabbiye, M. Tadele, M. Teferi, Removal of chromium (VI) from aqueous solution using vesicular basalt: A potential low cost wastewater treatment system, Heliyon. 4 (2018) e00682. https://doi.org/10.1016/j.heliyon.2018.e00682.
    [161] A. Pintar, M. Šetinc, J. Levec, Hardness and salt effects on catalytic hydrogenation of aqueous nitrate solutions, J. Catal. 174 (1998) 72–87. https://doi.org/10.1006/jcat.1997.1960.
    [162] J. Trawczyński, P. Gheek, J. Okal, M. Zawadzki, M.J.I. Gomez, Reduction of nitrate on active carbon supported Pd-Cu catalysts, Appl. Catal. A Gen. 409–410 (2011) 39–47. https://doi.org/10.1016/j.apcata.2011.09.020.
    [163] L. Lemaignen, C. Tong, V. Begon, R. Burch, D. Chadwick, Catalytic denitrification of water with palladium-based catalysts supported on activated carbons, Catal. Today. 75 (2002) 43–48. https://doi.org/10.1016/S0920-5861(02)00042-1.
    [164] Y. Yoshinaga, T. Akita, I. Mikami, T. Okuhara, Hydrogenation of nitrate in water to nitrogen over Pd-Cu supported on active carbon, J. Catal. 207 (2002) 37–45. https://doi.org/10.1006/jcat.2002.3529.
    [165] A.E. Palomares, C. Franch, A. Corma, A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor, Catal. Today. 172 (2011) 90–94. https://doi.org/10.1016/j.cattod.2011.05.015.
    [166] A.H. Pizarro, C.B. Molina, J.J. Rodriguez, F. Epron, Catalytic reduction of nitrate and nitrite with mono- and bimetallic catalysts supported on pillared clays, J. Environ. Chem. Eng. 3 (2015) 2777–2785. https://doi.org/10.1016/j.jece.2015.09.026.
    [167] M. Al Bahri, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, F. Epron, Activated carbon supported metal catalysts for reduction of nitrate in water with high selectivity towards N2, Appl. Catal. B Environ. 138–139 (2013) 141–148. https://doi.org/10.1016/j.apcatb.2013.02.048.
    [168] F. Deganello, L.F. Liotta, A. Macaluso, A.M. Venezia, G. Deganello, Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd-Cu catalysts, Appl. Catal. B Environ. 24 (2000) 265–273. https://doi.org/10.1016/S0926-3373(99)00109-5.
    [169] J. Sá, H. Vinek, Catalytic hydrogenation of nitrates in water over a bimetallic catalyst, Appl. Catal. B Environ. 57 (2005) 247–256. https://doi.org/10.1016/j.apcatb.2004.10.019.
    [170] O.S.G.P. Soares, L. Marques, C.M.A.S. Freitas, A.M. Fonseca, P. Parpot, J.J.M. Órfão, M.F.R. Pereira, I.C. Neves, Mono and bimetallic NaY catalysts with high performance in nitrate reduction in water, Chem. Eng. J. 281 (2015) 411–417. https://doi.org/10.1016/j.cej.2015.06.093.
    [171] O.S.G.P. Soares, J.J.M. Órfão, M.F.R. Pereira, Nitrate reduction in water catalysed by Pd-Cu on different supports, Desalination. 279 (2011) 367–374. https://doi.org/10.1016/j.desal.2011.06.037.
    [172] Z. Gao, Y. Zhang, D. Li, C.J. Werth, Y. Zhang, X. Zhou, Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction, J. Hazard. Mater. 286 (2015) 425–431. https://doi.org/10.1016/j.jhazmat.2015.01.005.
    [173] A.O. Costa, L.S. Ferreira, F.B. Passos, M.P. Maia, F.C. Peixoto, Microkinetic modeling of the hydrogenation of nitrate in water on Pd-Sn/Al2O3 catalyst, Appl. Catal. A Gen. 445–446 (2012) 26–34. https://doi.org/10.1016/j.apcata.2012.07.043.
    [174] S. Hamid, M.A. Kumar, W. Lee, Highly reactive and selective Sn-Pd bimetallic catalyst supported by nanocrystalline ZSM-5 for aqueous nitrate reduction, Appl. Catal. B Environ. 187 (2016) 37–46. https://doi.org/10.1016/j.apcatb.2016.01.035.
    [175] J. Park, Y. Hwang, S. Bae, Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites, J. Hazard. Mater. 374 (2019) 309–318. https://doi.org/10.1016/j.jhazmat.2019.04.051.
    [176] O.S.G.P. Soares, J.J.M. Órfão, J. Ruiz-Martínez, J. Silvestre-Albero, A. Sepúlveda-Escribano, M.F.R. Pereira, Pd-Cu/AC and Pt-Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures, Chem. Eng. J. 165 (2010) 78–88. https://doi.org/10.1016/j.cej.2010.08.065.
    [177] O.S.G.P. Soares, J.J.M. Órfão, M.F.R. Pereira, Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition, Appl. Catal. B Environ. 91 (2009) 441–448. https://doi.org/10.1016/j.apcatb.2009.06.013.
    [178] G. Centi, S. Perathoner, Remediation of water contamination using catalytic technologies, Appl. Catal. B Environ. 41 (2003) 15–29. https://doi.org/10.1016/S0926-3373(02)00198-4.
    [179] S. Hao, H. Zhang, High catalytic performance of nitrate reduction by synergistic effect of zero-valent iron (Fe0) and bimetallic composite carrier catalyst, J. Clean. Prod. 167 (2017) 192–200. https://doi.org/10.1016/j.jclepro.2017.07.255.
    [180] K. Wada, T. Hirata, S. Hosokawa, S. Iwamoto, M. Inoue, Effect of supports on Pd-Cu bimetallic catalysts for nitrate and nitrite reduction in water, Catal. Today. 185 (2012) 81–87. https://doi.org/10.1016/j.cattod.2011.07.021.
    [181] J. Jung, S. Bae, W. Lee, Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst, Appl. Catal. B Environ. 127 (2012) 148–158. https://doi.org/10.1016/j.apcatb.2012.08.017.
    [182] S. Jung, S. Bae, W. Lee, Development of Pd-Cu/hematite catalyst for selective nitrate reduction, Environ. Sci. Technol. 48 (2014) 9651–9658. https://doi.org/10.1021/es502263p.
    [183] F.A. Marchesini, V. Aghemo, I. Moreno, N. Navascués, S. Irusta, L. Gutierrez, Journal of Environmental Chemical Engineering Pd and Pd , In nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media, J. Environ. Chem. Eng. 8 (2020) 103651. https://doi.org/10.1016/j.jece.2019.103651.
    [184] B.S. Kadu, Y.D. Sathe, A.B. Ingle, R.C. Chikate, K.R. Patil, C. V. Rode, Efficiency and recycling capability of montmorillonite supported Fe-Ni bimetallic nanocomposites towards hexavalent chromium remediation, Appl. Catal. B Environ. 104 (2011) 407–414. https://doi.org/10.1016/j.apcatb.2011.02.011.
    [185] X. Zhou, G. Jing, B. Lv, Z. Zhou, R. Zhu, Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system, Chemosphere. 160 (2016) 332–341. https://doi.org/10.1016/j.chemosphere.2016.06.103.
    [186] S. Zhou, Y. Li, J. Chen, Z. Liu, Z. Wang, P. Na, Enhanced Cr(vi) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: Characterization, kinetics and mechanism, RSC Adv. 4 (2014) 50699–50707. https://doi.org/10.1039/c4ra08754b.
    [187] Y. Zhang, S.J. Park, Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution, Chem. Eng. J. 369 (2019) 353–362. https://doi.org/10.1016/j.cej.2019.03.083.
    [188] O.A. Zelekew, D.H. Kuo, H. Abdullah, Synthesis of (Sn,Zn)(O,S) bimetallic oxysulfide catalyst for the detoxification of Cr+6 in aqueous solution, Adv. Powder Technol. 30 (2019) 3099–3106. https://doi.org/10.1016/j.apt.2019.09.016.
    [189] J.H. Ou, Y.T. Sheu, D.C.W. Tsang, Y.J. Sun, C.M. Kao, Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation, Chemosphere. 256 (2020) 127158. https://doi.org/10.1016/j.chemosphere.2020.127158.
    [190] C. Shen, H. Li, Y. Wen, F. Zhao, Y. Zhang, D. Wu, Y. Liu, F. Li, Spherical Cu2O-Fe3O4@chitosan bifunctional catalyst for coupled Cr-organic complex oxidation and Cr(VI) capture-reduction, Chem. Eng. J. 383 (2020) 123105. https://doi.org/10.1016/j.cej.2019.123105.
    [191] S. Wang, F. Meng, X. Sun, M. Bao, J. Ren, S. Yu, Z. Zhang, J. Ke, L. Zeng, Bimetallic Fe/In metal-organic frameworks boosting charge transfer for enhancing pollutant degradation in wastewater, Appl. Surf. Sci. 528 (2020) 147053. https://doi.org/10.1016/j.apsusc.2020.147053.
    [192] A.H. Jawad, S.N. Surip, Diamond & Related Materials Upgrading low rank coal into mesoporous activated carbon via microwave process for methylene blue dye adsorption : Box Behnken Design and mechanism study, Diam. Relat. Mater. 127 (2022) 109199. https://doi.org/10.1016/j.diamond.2022.109199.
    [193] H.E. Kim, J. Lee, H. Lee, C. Lee, Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH, Appl. Catal. B Environ. 115–116 (2012) 219–224. https://doi.org/10.1016/j.apcatb.2011.12.027.
    [194] K.G.N. Quiton, M.C. Lu, Y.H. Huang, Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: A review, Chemosphere. 262 (2021) 128371. https://doi.org/10.1016/j.chemosphere.2020.128371.
    [195] R.K. Gautam, V. Rawat, S. Banerjee, M.A. Sanroman, S. Soni, S.K. Singh, M.C. Chattopadhyaya, Synthesis of bimetallic Fe-Zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and Congo red in water, J. Mol. Liq. 212 (2015) 227–236. https://doi.org/10.1016/j.molliq.2015.09.006.
    [196] M. Das, D. Mishra, T.K. Maiti, A. Basak, P. Pramanik, Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: New, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting, Nanotechnology. 19 (2008). https://doi.org/10.1088/0957-4484/19/41/415101.
    [197] K. Jirátová, R. Perekrestov, M. Dvořáková, J. Balabánová, P. Topka, M. Koštejn, J. Olejníček, M. Čada, Z. Hubička, F. Kovanda, Cobalt oxide catalysts in the form of thin films prepared by magnetron sputtering on stainless-steel meshes: Performance in ethanol oxidation, Catalysts. 9 (2019). https://doi.org/10.3390/catal9100806.
    [198] F.F. Dias, A.A.S. Oliveira, A.P. Arcanjo, F.C.C. Moura, J.G.A. Pacheco, Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton, Appl. Catal. B Environ. 186 (2016) 136–142. https://doi.org/10.1016/j.apcatb.2015.12.049.
    [199] M.F. Farias, Y.S. Domingos, G.J. Turolla Fernandes, F.L. Castro, V.J. Fernandes, M.J. Fonseca Costa, A.S. Araujo, Effect of acidity in the removal-degradation of benzene in water catalyzed by Co-MCM-41 in medium containing hydrogen peroxide, Microporous Mesoporous Mater. 258 (2018) 33–40. https://doi.org/10.1016/j.micromeso.2017.09.003.
    [200] B. Yang, Z. Tian, L. Zhang, Y. Guo, S. Yan, Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, J. Water Process Eng. 5 (2015) 101–111. https://doi.org/10.1016/j.jwpe.2015.01.006.
    [201] M. Vinita, R. Praveena Juliya Dorathi, K. Palanivelu, Degradation of 2,4,6-trichlorophenol by photo Fenton’s like method using nano heterogeneous catalytic ferric ion, Sol. Energy. 84 (2010) 1613–1618. https://doi.org/10.1016/j.solener.2010.06.008.
    [202] J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1–84. https://doi.org/10.1080/10643380500326564.
    [203] J. De Laat, H. Gallard, Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling, Environ. Sci. Technol. 33 (1999) 2726–2732. https://doi.org/10.1021/es981171v.
    [204] M. Kosmulski, pH-dependent surface charging and points of zero charge. IV. Update and new approach, J. Colloid Interface Sci. 337 (2009) 439–448. https://doi.org/10.1016/j.jcis.2009.04.072.
    [205] M. Arshadi, M.K. Abdolmaleki, F. Mousavinia, A. Khalafi-Nezhad, H. Firouzabadi, A. Gil, Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes, Chem. Eng. Res. Des. 112 (2016) 113–121. https://doi.org/10.1016/j.cherd.2016.05.028.
    [206] B.G. Kwon, E. Kim, J.H. Lee, Pentachlorophenol decomposition by electron beam process enhanced in the presence of Fe(III)-EDTA, Chemosphere. 74 (2009) 1335–1339. https://doi.org/10.1016/j.chemosphere.2008.11.049.
    [207] X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang, S. Yang, Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution, Appl. Catal. B Environ. 107 (2011) 274–283. https://doi.org/10.1016/j.apcatb.2011.07.025.
    [208] X. Guo, H. Li, S. Zhao, Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst, J. Taiwan Inst. Chem. Eng. 55 (2015) 90–100. https://doi.org/10.1016/j.jtice.2015.03.039.
    [209] J. An, L. Zhu, Y. Zhang, H. Tang, Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst, J. Environ. Sci. (China). 25 (2013) 1213–1225. https://doi.org/10.1016/S1001-0742(12)60172-7.
    [210] I. Tbessi, M. Benito, J. Llorca, E. Molins, S. Sayadi, W. Najjar, Silver and manganese co-doped titanium oxide aerogel for effective diclofenac degradation under UV-A light irradiation, J. Alloys Compd. 779 (2019) 314–325. https://doi.org/10.1016/j.jallcom.2018.11.083.
    [211] T. Sun, M. Gong, Y. Cai, S. Xiao, L. Zhang, Y. Zhang, Z. Xu, D. Zhang, Y. Liu, C. Zhou, MCM-41-supported Fe(Mn)/Cu bimetallic heterogeneous catalysis for enhanced and recyclable photo-Fenton degradation of methylene blue, Res. Chem. Intermed. 46 (2020) 459–474. https://doi.org/10.1007/s11164-019-03960-8.
    [212] G.A. Ashraf, R.T. Rasool, M. Hassan, L. Zhang, Enhanced photo Fenton-like activity by effective and stable Al–Sm M-hexaferrite heterogenous catalyst magnetically detachable for methylene blue degradation, J. Alloys Compd. 821 (2020) 153410. https://doi.org/10.1016/j.jallcom.2019.153410.
    [213] G.A. Ashraf, R.T. Rasool, M. Hassan, L. Zhang, H. Guo, Heterogeneous catalytic activation of BaCu-based M-hexaferrite nanoparticles for methylene blue degradation under photo-Fenton-like system, Mol. Catal. 505 (2021) 111501. https://doi.org/10.1016/j.mcat.2021.111501.
    [214] T. Fotiou, T. Triantis, T. Kaloudis, A. Hiskia, Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products, Chemosphere. 119 (2015) S89–S94. https://doi.org/10.1016/j.chemosphere.2014.04.045.
    [215] B. Palas, G. Ersöz, S. Atalay, Photo Fenton-like oxidation of Tartrazine under visible and UV light irradiation in the presence of LaCuO3 perovskite catalyst, Process Saf. Environ. Prot. 111 (2017) 270–282. https://doi.org/10.1016/j.psep.2017.07.022.
    [216] C. Xiao, S. Li, F. Yi, B. Zhang, D. Chen, Y. Zhang, H. Chen, Y. Huang, Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin-FeOOH system for the degradation of organic dyes, RSC Adv. 10 (2020) 18704–18714. https://doi.org/10.1039/d0ra03361h.
    [217] N.N.N. Mahasti, Y.J. Shih, Y.H. Huang, Recovery of magnetite from fluidized-bed homogeneous crystallization of iron-containing solution as photocatalyst for Fenton-like degradation of RB5 azo dye under UVA irradiation, Sep. Purif. Technol. 247 (2020) 116975. https://doi.org/10.1016/j.seppur.2020.116975.
    [218] J. Pratiwi, J.Y. Lin, N.N.N. Mahasti, Y.J. Shih, Y.H. Huang, Fluidized-bed synthesis of iron-copper bimetallic catalyst (FeIIICuI@SiO2) for mineralization of benzoic acid in blue light-assisted Fenton process, J. Taiwan Inst. Chem. Eng. 119 (2021) 60–69. https://doi.org/10.1016/j.jtice.2021.02.007.
    [219] R. Khlifi, L. Belbahri, S. Woodward, M. Ellouz, A. Dhouib, S. Sayadi, T. Mechichi, Decolourization and detoxification of textile industry wastewater by the laccase-mediator system, 175 (2010) 802–808. https://doi.org/10.1016/j.jhazmat.2009.10.079.
    [220] M. Tariq, M. Muhammad, J. Khan, A. Raziq, M. Kashif, A. Niaz, S.S. Ahmed, A. Rahim, Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu @ MWCNTs photocatalyst, J. Mol. Liq. 312 (2020) 113399. https://doi.org/10.1016/j.molliq.2020.113399.
    [221] F.H. Alhamedi, M.A. Rauf, S.S. Ashraf, Degradation studies of Rhodamine B in the presence, DES. 239 (2009) 159–166. https://doi.org/10.1016/j.desal.2008.03.016.
    [222] L.G. Devi, C. Munikrishnappa, B. Nagaraj, K.E. Rajashekhar, Journal of Molecular Catalysis A : Chemical Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S, "Journal Mol. Catal. A, Chem. 374–375 (2013) 125–131. https://doi.org/10.1016/j.molcata.2013.03.023.
    [223] O. Kbife, B. Muthuraaman, M.S.R. Rao, S. Singh, Enhanced photo ‑ fenton and photoelectrochemical activities in nitrogen doped brownmillerite, Sci. Rep. (2022) 1–13. https://doi.org/10.1038/s41598-022-08966-8.
    [224] M.A.O. Xuhui, W.E.I. Lin, H. Song, Z.H.U. Hua, L.I.N. An, G.A.N. Fuxing, Enhanced electrochemical oxidation of phenol by introducing ferric ions and UV radiation, J. Environ. Sci. 20 (2008) 1386–1391. https://doi.org/10.1016/S1001-0742(08)62237-8.
    [225] Y. Li, L. Li, Z. Chen, J. Zhang, L. Gong, Y. Wang, H. Zhao, Y. Mu, Chemosphere Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization : Process , kinetics , and mechanisms, Chemosphere. 192 (2018) 372–378. https://doi.org/10.1016/j.chemosphere.2017.10.126.
    [226] S. Sivakumar, A. Selvaraj, A.K. Ramasamy, V. Balasubramanian, Enhanced photocatalytic degradation of reactive dyes over FeTiO3/TiO2 heterojunction in the presence of H 2O2, Water. Air. Soil Pollut. 224 (2013). https://doi.org/10.1007/s11270-013-1529-x.
    [227] H.S. Lu, H. Zhang, R. Liu, X. Zhang, H. Zhao, G. Wang, Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts, Appl. Surf. Sci. 392 (2017) 402–409. https://doi.org/10.1016/j.apsusc.2016.09.045.
    [228] N. Oueda, Y.L. Bonzi-coulibaly, I.W.K. Ouédraogo, Deactivation Processes , Regeneration Conditions and Reusability Performance of CaO or MgO Based Catalysts Used for Biodiesel Production — A Review, (2017) 94–122. https://doi.org/10.4236/msa.2017.81007.
    [229] X. Deng, Z. Fang, Y. Liu, C. Yu, Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst, Energy. (2011). https://doi.org/10.1016/j.energy.2010.12.043.
    [230] V. Mahdavi, A. Monajemi, Journal of the Taiwan Institute of Chemical Engineers Optimization of operational conditions for biodiesel production from cottonseed oil on CaO–MgO/Al2O3 solid base catalysts, J. Taiwan Inst. Chem. Eng. 45 (2014) 2286–2292. https://doi.org/10.1016/j.jtice.2014.04.020.
    [231] A. Adeyemi, A. Olugbenga, M. Gazi, Applied Catalysis B : Environmental Magnetic LDH-based CoO – NiFe 2 O 4 catalyst with enhanced performance and recyclability for e ffi cient decolorization of azo dye via Fenton-like reactions, Appl. Catal. B Environ. 243 (2019) 243–252. https://doi.org/10.1016/j.apcatb.2018.10.050.
    [232] A.M. Tayeb, M.A. Tony, S.A. Mansour, Application of Box – Behnken factorial design for parameters optimization of basic dye removal using nano ‑ hematite photo ‑ Fenton tool, Appl. Water Sci. 8 (2018) 1–9. https://doi.org/10.1007/s13201-018-0783-x.
    [233] P. Tripathi, V. Chandra, A. Kumar, Optimization of an azo dye batch adsorption parameters using Box – Behnken design, DES. 249 (2009) 1273–1279. https://doi.org/10.1016/j.desal.2009.03.010.
    [234] R. Mahdavi, S.S.A. Talesh, Enhanced selective photocatalytic and sonocatalytic degradation in mixed dye aqueous solution by ZnO / GO nanocomposites : Response surface methodology, Mater. Chem. Phys. 267 (2021) 124581. https://doi.org/10.1016/j.matchemphys.2021.124581.
    [235] C. Francis, Z. Lacson, M. Lu, Y. Huang, Journal of Water Process Engineering Calcium-based seeded precipitation for simultaneous removal of fluoride and phosphate : Its optimization using BBD-RSM and defluoridation mechanism, J. Water Process Eng. 47 (2022) 102658. https://doi.org/10.1016/j.jwpe.2022.102658.
    [236] K. Yetilmezsoy, S. Demirel, R.J. Vanderbei, Response surface modeling of Pb ( II ) removal from aqueous solution by Pistacia vera L .: Box – Behnken experimental design, 171 (2009) 551–562. https://doi.org/10.1016/j.jhazmat.2009.06.035.
    [237] M. Papadaki, R.J. Emery, M.A. Abu-hassan, D. Alex, I.S. Metcalfe, D. Mantzavinos, Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents, 34 (2004) 35–42. https://doi.org/10.1016/S1383-5866(03)00172-2.
    [238] K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Adsorptive removal of chromium ( VI ) from aqueous solution over powdered activated carbon : Optimisation through response surface methodology, Chem. Eng. J. 173 (2011) 135–143. https://doi.org/10.1016/j.cej.2011.07.049.
    [239] X. Nui, H. Thi, T. Nhung, T. Nguyen, M.B. Nguyen, V.T. Tran, H. V Doan, Journal of the Taiwan Institute of Chemical Engineers Green synthesis of H-ZSM-5 zeolite-anchored O-doped g α-C3N4 for photodegradation of Reactive Red 195 ( RR 195 ) under solar light, 114 (2020) 91–102. https://doi.org/10.1016/j.jtice.2020.09.018.
    [240] R.S.C. Advances, M.A. Meetani, M.A. Rauf, S. Hisaindee, A. Khaleel, A. Alzamly, A. Ahmad, RSC Advances Mechanistic studies of photoinduced degradation of Orange G using LC / MS, (2011) 490–497. https://doi.org/10.1039/c1ra00177a.
    [241] A.A. Elbatea, S.A. Nosier, A.A. Zatout, I. Hassan, G.H. Sedahmed, M.H. Abdel-aziz, A. El-naggar, Journal of Water Process Engineering Removal of reactive red 195 from dyeing wastewater using electro-Fenton process in a cell with oxygen sparged fixed bed electrodes, J. Water Process Eng. 41 (2021) 102042. https://doi.org/10.1016/j.jwpe.2021.102042.
    [242] R. Davarnejad, Z. Rostami, S. Mansoori, J.F. Kennedy, Bioresource Technology Reports Metronidazole elimination from wastewater through photo-Fenton process using green-synthesized alginate-based hydrogel coated bimetallic iron ‑ copper nanocomposite beads as a reusable heterogeneous catalyst, Bioresour. Technol. Reports. 18 (2022) 101068. https://doi.org/10.1016/j.biteb.2022.101068.
    [243] A. Kumar, V. Kumar, Modeling and optimization of fi xed mode dual e ff ect ( photocatalysis and photo-Fenton ) assisted Metronidazole degradation using ANN coupled with genetic algorithm, 250 (2019). https://doi.org/10.1016/j.jenvman.2019.109428.
    [244] L. Xu, J. Wang, Applied Catalysis B : Environmental Fenton-like degradation of 2 , 4-dichlorophenol using Fe 3 O 4 magnetic nanoparticles, "Applied Catal. B, Environ. 123–124 (2012) 117–126. https://doi.org/10.1016/j.apcatb.2012.04.028.
    [245] B. Kakavandi, A. Takdastan, N. Jaafarzadeh, M. Azizi, Journal of Photochemistry and Photobiology A : Chemistry Application of Fe 3 O 4 @ C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method, "Journal Photochem. Photobiol. A Chem. 314 (2016) 178–188. https://doi.org/10.1016/j.jphotochem.2015.08.008.
    [246] M. Khodadadi, A. Hossein, T.J. Al-musawi, M.H. Ehrampoush, A.H. Mahvi, Journal of Water Process Engineering The catalytic activity of FeNi 3 @ SiO 2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method, J. Water Process Eng. 32 (2019) 100943. https://doi.org/10.1016/j.jwpe.2019.100943.
    [247] Y. Liu, J. Li, L. Wu, D. Wan, Y. Shi, Q. He, J. Chen, Science of the Total Environment Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon : Insights into performance and reaction mechanism, Sci. Total Environ. 761 (2021) 143956. https://doi.org/10.1016/j.scitotenv.2020.143956.
    [248] P. Mahamallik, A. Pal, Photo-Fenton process in Co(II)-adsorbed admicellar soft-template on alumina support for methyl orange degradation, Catal. Today. 348 (2020) 212–222. https://doi.org/10.1016/j.cattod.2019.07.045.
    [249] B. Li, Z. Ding, Photoassisted degradation of CI Reactive Red 195 using an Fe (III) -grafted as a novel heterogeneous Fenton catalyst over a wide pH range Coloration Technology, (2013) 403–411. https://doi.org/10.1111/cote.12049.
    [250] T. Lou, S. Song, X. Gao, W. Qian, X. Chen, Q. Li, Journal of Colloid and Interface Science Sub-20-nm anatase TiO2 anchored on hollow carbon spheres for enhanced photocatalytic degradation of reactive red 195, 617 (2022) 663–672. https://doi.org/10.1016/j.jcis.2022.03.049.
    [251] E. Norabadi, A.H. Panahi, R. Ghanbari, A. Meshkinian, H. Kamani, S.D. Ashrafi, Optimizing the parameters of amoxicillin removal in a photocatalysis/ozonation process using Box–Behnken response surface methodology, Desalin. Water Treat. 192 (2020) 234–240. https://doi.org/10.5004/dwt.2020.25728.
    [252] S. Sohrabi, F. Akhlaghian, Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology, Process Saf. Environ. Prot. 99 (2016) 120–128. https://doi.org/10.1016/j.psep.2015.10.016.
    [253] M. Raji, M.N. Tahroudi, F. Ye, J. Dutta, Prediction of heterogeneous Fenton process in treatment of melanoidin-containing wastewater using data-based models, J. Environ. Manage. 307 (2022) 114518. https://doi.org/10.1016/j.jenvman.2022.114518.
    [254] P. Mahamallik, A. Pal, Photo-Fenton process in a Co(II)-adsorbed micellar soft-template on an alumina support for rapid methylene blue degradation, RSC Adv. 6 (2016) 100876–100890. https://doi.org/10.1039/c6ra19857k.
    [255] R. Rahimpour, N. Chaibakhsh, M.A. Zanjanchi, Z. Moradi-shoeili, Fabrication of ZnO / FeVO 4 heterojunction nanocomposite with high catalytic activity in photo-Fenton-like process, J. Alloys Compd. 817 (2020) 152702. https://doi.org/10.1016/j.jallcom.2019.152702.
    [256] M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron : response surface methodology with a Box-Behnken design, (2017) 104–112.
    [257] Z. Hua, W. Ma, X. Bai, R. Feng, Heterogeneous Fenton degradation of bisphenol A catalyzed by efficient adsorptive Fe3O4/GO nanocomposites, 1 (2014) 7737–7745. https://doi.org/10.1007/s11356-014-2728-8.
    [258] A.H. Alwash, A.Z. Abdullah, N. Ismail, Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water, J. Hazard. Mater. 233–234 (2012) 184–193. https://doi.org/10.1016/j.jhazmat.2012.07.021.
    [259] C. Sahoo, A.K. Gupta, Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach, J. Hazard. Mater. 215–216 (2012) 302–310. https://doi.org/10.1016/j.jhazmat.2012.02.072.
    [260] C. Cai, H. Zhang, X. Zhong, L. Hou, Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater. 283 (2015) 70–79. https://doi.org/10.1016/j.jhazmat.2014.08.053.
    [261] S. Garcia-Segura, L.M. Bellotindos, Y.H. Huang, E. Brillas, M.C. Lu, Fluidized-bed Fenton process as alternative wastewater treatment technology—A review, J. Taiwan Inst. Chem. Eng. 67 (2016) 211–225. https://doi.org/10.1016/j.jtice.2016.07.021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE