| 研究生: |
蔡翔任 Tsai, Hsiang-Jen |
|---|---|
| 論文名稱: |
在霧運算中使用強化型二元粒子群演算法的動態多資源分配方法 Dynamic Multi-Resource Allocation Approach for Fog Computing Using Enhanced BPSO Algorithm |
| 指導教授: |
郭耀煌
Kuo, Yau-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 物聯網 、霧運算 、資源分配 、粒子群演算法 |
| 外文關鍵詞: | Internet of Things, Fog Computing, Resource Allocation, PSO |
| 相關次數: | 點閱:95 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著越來越多物聯網應用部署在環境中,大量的資料將不斷的湧入雲端,造成雲端網路的阻塞。因此,思科提出霧運算概念來改善傳統物聯網服務過於依賴雲端運算的問題。在霧雲架構中,物聯網裝置將彼此合作,讓部分工作在本地端先行處理,藉此舒緩雲端壓力,降低網路延遲。對此,霧系統的資源分配就很顯得格外重要。哪些工作要分給哪些物聯網裝置處理,哪些工作又要送到雲端執行,這些決定都會嚴重影響到霧系統的效能。然而,霧系統屬於動態且多異質資源的環境,傳統的資源分配方法並不適用。為了讓霧系統能有效的分配物聯網裝置資源,本論文將提出一適用於霧運算之動態多資源管理系統。
本論文首先基於二元粒子群演算法以及貪婪演算法的分別提出兩個動態多資源分配方法。其中,二元粒子群演算法在效果最佳化上有很大的優勢,但是缺點是時間成本稍大;然而貪婪演算法雖然能快速的提供資源分配策略,但是所提供的策略有時效果不佳。因此本論文進一步透過結合二元粒子群演算法與貪婪演算法的優點,提出強化型二元粒子群演算法。藉由決策管理模組決定適合當下情境的資源分配策略,並且在各種不同的動態環境下探討演算法效果好壞。此外,為了舒緩雲端的工作壓力並處理資料隱私性問題,本論文特別設計了網路壅塞與資料保護的解決方案,讓管理者可以動態的根據不同網路壅塞情況以及服務需求採用不同的解決方案。
最後由實驗結果得知,在各種不同的動態環境設定下,例如服務尖峰/離峰、不同資源變動率與混和式環境,本論文提出的方法都能比現有方法更有效的分配霧系統的資源,並且能滿足使用者在資料隱私性、服務即時性,以及網路壅塞舒緩的各種需求。由此可知,本論文提出的系統較其他方法更適用於霧系統的資源排程。
With more IoT services are provided in our daily life, numerous data are transmitted to cloud servers leading to congestion. Thus, Cisco proposes the concept of fog computing to alleviate the problem that IoT services highly rely on cloud computing. In the Fog-Cloud architecture, IoT devices will cooperate to process some tasks locally instead of transmitting to cloud severs totally, to alleviate network loading and reduce latency. Since the decision that what tasks are performed locally and what tasks will be transmitted to cloud servers will influence system performance significantly, providing resource allocation in fog systems becomes an important issue. However, fog systems are usually dynamic with multiple resources, so the traditional resource allocation approaches are impractical. To allocate resource of IoT devices in fog systems effectively, the Dynamic Multiple Resource Management (DMRM) is further proposed.
Based on the binary particle swarm optimization (BPSO) algorithm and greedy principle, two kinds of dynamic multiple resource allocation (DMRA) approaches are proposed, respectively. The DMRA based on BPSO can provide a more practical solution but with higher time consumption. The DMRA based on greedy principle can be performed efficiently, but the solution it provided is sometimes worse. Hence, DMRM applies the Enhanced-BPSO (E-BPSO) approach which integrates both BPSO and greedy-based approaches, to derive a practical resource allocation solution efficiently. After that, the proposed DMRM is performed in various dynamic environments to verify its results. Moreover, to alleviate the workload of cloud servers and protect data privacy, two solutions are proposed for users to deal with network congestion and data protection.
Finally, according to the experiment results, the proposed DMRM is shown to have better solutions than existing approaches in allocating resources under various situations such as service peak/off-peak period, various resource available rate and both of the above situations. Furthermore, the requirements of data privacy, service instantaneity, and network offloading, can also be achieved. Therefore, the proposed DMRM can provide the most practical resource allocation solution in fog systems.
A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra. “A framework for mapping with resource co-allocation in heterogeneous computing systems”. In 9th Heterogeneous Computing Workshop (HCW’ 2000), pages 273–286, May 2000
A.H. Alhusaini, V.K. Prasanna, and C. S. Raghavendra, “Run-time adaptation for grid environments”, Proceedings 15th International Parallel and Distributed Processing Symposium, pp. 864-874, April 2001
Ayet Allah Ferjani; Noureddine Liouane; Imed Kacem , “Task allocation for wireless sensor network using logic gate-based evolutionary algorithm”, International Conference on Control, Decision and Information Technologies, pp. 654-658, 2016
Amazon EC2 Instance Types, https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
Vangelis Angelakis, “Allocation of Heterogeneous Resources of an IoT Device to Flexible Services”, IEEE INTERNET OF THINGS JOURNAL, VOL. 3, NO. 5, OCTOBER 2016
F. H. Bijarbooneh, P. Flener, E. Ngai, J. Pearson, “Energy-efficient task-mapping for data-driven sensor network macroprogramming using constraint programming,” in Proc. of the 9th International Workshop on Constraint Modelling and Reformulation, 2010.
Benjamin Billet, Valérie Issarny, “From Task Graphs to Concrete Actions: A New Task Mapping Algorithm for the Future Internet of Things”, IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, 2014
Maurice Clerc, James Kennedy. “The particle swarm - explosion, stability, and convergence in a multidimensional complex space”, IEEE Trans. Evolutionary Computation, 6(1):58-73, 2002.
Giuseppe Colistra, Virginia Pilloni, Luigi Atzori, “Task allocation in group of nodes in the IoT: a Consensus Approach”, IEEE International Conference on Communications (ICC), 2014
Ioan Cristian Trelea. “The particle swarm optimization algorithm: convergence analysis and parameter selection”, Inf. Process. Lett., 85(6):317-325, 2003
Resource allocation in heterogeneous cloud radio access networks: advances and challenges IEEE Wireless Communications, pp66-73, 2015
Optimizing grid resource allocation by combining fuzzy clustering with application preference
W. Li, F. C. Delicato, A. Y. Zomaya, “Adaptive energy-efficient scheduling for hierarchical wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 9, no. 3, 2013.
Eberhart, R. C., Kennedy, J.,“Particle Swarm Optimization”, Vol. IV, Proceedings of IEEE Interna-tional Conference on Neural Networks, pp.1942-1948. , 1995
Eberhart, R. C. , Kennedy, J. “A New Optimizer Using Particle Swarm Theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE Service Cen-ter, Piscataway, NJ, Nagoya, Japan, 1995, pp. 39-43
FuFang Li; DeYu Qi, “Research on Grid Resource Allocation Algorithm Based on Fuzzy Clustering”, Second International Conference on Future Generation Communication and Networking, 2008
Wenzhong Guo; Jie Li; Guolong Chen; Yuzhen Niu; Chengyu Chen , “A PSO-Optimized Real-Time Fault-Tolerant Task Allocation Algorithm in Wireless Sensor Networks” IEEE Transactions on Parallel and Distributed Systems, pp. 3236 – 3249, 2015
Y. Jin , J. Jin , A. Gluhak, K. Moessner and M. Palaniswami, “An Intelligent Task Allocation Scheme for Multihop Wireless Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, n°3, pp. 444-451, 2012.
J. Jordan, S. Helwig, R. Wanka, “Social interaction in particle swarm optimization, the ranked FIPS, and adaptive multi-swarms,” in Proc. Genet. Evol. Comput. Conf. (GECCO), Atlanta, GA, USA, pp. 49–56, Jul. 2008,
J. Kennedy, R.C. Eberhart, Y. Shi. “Swarm intelligence”. Morgan Kaufmann Publishers, San Francisco, 2001.
Kusum Deep, Pinkey Chauhan, Millie Pant, “Multi task selection including part mix, tool allocation and process plans in CNC machining centers using new binary PSO”, IEEE Congress on Evolutionary Computation, p.p.1-8, 2012
J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun. 2006
Poongothai Marimuthu, Rajeswari Arumugam, “Application of hybrid meta-heuristic algorithm for assigning real-time tasks to heterogeneous processors”, International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2015
Seyedali Mirjalili, Andrew Lewis ,“S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization”
J. Octavio Gutierrez-Garcia, K. M. Sim, “A family of heuristics for agent-based elastic cloud bag-of-tasks concurrent scheduling,” Future Generation Computer Systems, vol. 29, no. 7, 2013
Amit Rauniyar, Pranab K Muhuri, “Multi-Robot Coalition Formation Problem: Task Allocation with Adaptive Immigrants Based Genetic Algorithms”, IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016
S. L. Sabat, L. Ali, S. K. Udgatab, “Integrated learning particle swarm optimizer for global optimization,” Appl. Soft Comput., vol. 11, no. 1, pp. 574–584, Jan. 2011
R. SHAMS and F. KHAN, “Solving Wireless Network Scheduling Problem by Genetic Algorithm,” IAMURE International Journal of Mathematics, Engineering & Technology, vol. 4, pp. 63-70, 2012.
Shi, Y., “Particle Swarm Optimization”, Proceedings of Electronic Data Systems, Kokomo, IN 46902, USA.,2004
Y. Shi, R.C. Eberhart.Empirical, “study of particle swarm optimization”. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pages 1945-1950, 1999
S. Thamarai Selvi, C. Valliyammai, V. Neelaya Dhatchayani, “Resource Allocation Issues and Challenges in Cloud Computing”, International Conference on Recent Trends in Information Technology, 2014
Wenzhong Guo, Jie Li, Guolong Chen, Yuzhen Niu, Chengyu Chen, “A PSO-Optimized Real-Time Fault-Tolerant Task Allocation Algorithm in Wireless Sensor Networks”, IEEE Transactions on Parallel and Distributed Systems, 2015
X.-F. Xie, W.-J. Zhang, Z.-L. Yang, “A dissipative particle swarm optimization,” in Proc. 4th Congr. Evol. Comput. (CEC), vol. 2. Honolulu, HI, USA, May 2002
Y. Yu, V. K. Prasanna, “Energy-balanced task allocation for collaborative processing in wireless sensor networks,” Mobile Networks and Applications, vol. 10, no. 1-2, 2005.
Jun Yang, Hesheng Zhang, Yun Ling, Cheng Pan and Wei Sun , “Task Allocation for Wireless Sensor Network Using Modified Binary Particle Swarm Optimization”, IEEE Sensors Journal, pp. 882 – 892, 2014