| 研究生: |
許瑞玟 Hsu, Rui-Wen |
|---|---|
| 論文名稱: |
利用金屬表面奈米結構增強貝索光束之聚焦特性 Enhancement of focusing properties of Bessel-like beam by metallic surface nanostructure |
| 指導教授: |
張晉愷
Chang, Chin-Kai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 表面電漿子 、金屬奈米狹縫結構 、有限時域差分法 |
| 外文關鍵詞: | CSSG structure, Doughnut shape, Long DOF |
| 相關次數: | 點閱:148 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來奈米金屬結構與電磁波之間的相互作用所產生的表面電漿子(surface plasmon)已受到光學領域上學者高度的關注,因為其光場可以產生強近場並突破繞射極限(diffraction limit),此重大發現對於次波長元件的應用相當有發展性。在奈米尺度下的透鏡也是利用金屬與介電質之間所產生的表面電漿子效應,進而強化奈米透鏡的聚焦效果並提高黃光微影曝光的解析度,讓半導體晶片的製程能夠進一步突破更微小的奈米等級。
本研究主要利用電子束蒸鍍機(E-beam Evaporator)將玻璃基板上面鍍上一層銀薄膜,再使用雙束型聚焦離子束(Dual Beam-Focused Ion Beam)在銀薄膜上蝕刻出一個同時具有凹槽與狹縫之同心圓結構。通過改變凹槽位置,我們研究了由此結構發出光束的聚焦特性。此外也使用了532nm和405nm兩種不同波長的雷射光去觀察當不同波長之雷射光打到金屬奈米結構所產生不同的表面電漿傳播效應。研究發現當調整凹槽在一個適當的位置時,金屬奈米狹縫結構發出405nm的光會產生一個長焦深和次波長尺寸的光點,532nm波長的雷射光也會隨著凹槽位置變化產生不同的發射光束。此外,銀金屬對於405nm雷射光與532nm雷射光有不同的吸收率,造成不同雷射光分別擁有了各自在銀金屬表面上的傳播長度。
為了驗證實驗的準確性,我們也使用了有限時域差分法(Finite Difference Time Domain)驗證實驗結果。最後模擬結果與實驗結果也非常的吻合。
The circular slit surrounded by surface groove (CSSG) structure can provide a long depth of focus (DOF) with different shapes of focusing spots for the different wavelengths of inci-dent light by modulating the locations of circular grooves. Furthermore, the mean radius of the circular groove can modulate the focusing properties of transmitted light from the CSSG structure. The focusing properties of transmitted light for 405 nm wavelength can be en-hanced to possess a long DOF and higher intensity by the circular groove on a proper loca-tion. It can be applied to micro-machining and photolithography because the transmitted light of the CSSG structure can provide a long working distance to eliminate other variations (such as vibration) during the fabrication process. The transmitted light of CSSG structure for 532 nm wavelength is expected to be a doughnut shape with a long propagation distance. The doughnut shape of the beam with a long propagation distance can be a versatile tech-nique for optical trapping by its radiation force.
1. Vahedi, A. and M. Kouhi,"Liquid Crystal-Based Surface Plasmon Resonance Biosensor. Plasmonics, 15(1): p. 61-71. (2020).
2. Buil, S., et al.,''Local field intensity enhancements on gold semicontinuous films investigated with an aperture nearfield optical microscope in collection mode''. Journal of Applied Physics,100(6). (2006).
3. Alnasser, K., et al., ''Photonic Band Gaps and Resonance Modes in 2D Twisted Moire Photonic Crystal''. Photonics, 8(10). (2021).
4. Cui, T.J., R.P. Liu, and D.R. Smith, ''Introduction to Metamaterials. Metamaterials'': Theory, Design, and Applications, ed. T.J. Cui, D.R. Smith, and R. Liu. p. 1-19. (2010).
5. Kanamori, Y., R. Hokari, and K. Hane, ''MEMS for Plasmon Control of Optical Metamaterials''. Ieee Journal of Selected Topics in Quantum Electronics, 21(4). (2015).
6. Moore, G.E., ''Progress in digital integrated electronics Technical literaiture'', Copyright 1975 IEEE. Reprinted, with permission. Technical Digest. International Electron Devices Meeting, IEEE, pp. 11-13.(1975).
7. Ma, X. and Y.Q. Li, ''Resolution enhancement optimization methods in optical lithography with improved manufacturability''. Journal of Micro-Nanolithography Mems and Moems,10(2). (2011).
8. Ebbesen, T.W., et al.,''Extraordinary optical transmission through sub-wavelength hole arrays''. Nature, 391(6668): p. 667-669.(1998).
9. Bethe, H.A., "Theory of diffraction by small holes". Physical Review,66(7/8): p. 163-182.(1944).
10. Kumar, R.,''Extraordinary optical transmission by interference of diffracted wavelets''. Optica Applicata,40(2): p. 491-499.(2010).
11. Sondergaard, T., et al.,''Extraordinary Optical Transmission Enhanced by Nanofocusing''. Nano Letters,10(8): p. 3123-3128. (2010).
12. Sun, B., et al.,''Improved extraordinary optical transmission though single nano-slit by nano-defocusing''. Optics and Laser Technology,54: p. 214-218. (2013).
13. Lin, J.S., S.H. Oh, and H. Zhang,"Sensitivity of resonance frequency in the detection of thin layer using nano-slit structures". Ima Journal of Applied Mathematics,86(1): p. 146-164.(2021).
14. Lezec, H.J., et al.,"Beaming light from a subwavelength aperture. Science", 297(5582): p. 820-822.(2022).
15. Zhu, H., et al.,"Directional beaming of light from a subwavelength metal slit with phase-gradient metasurfaces". Scientific Reports,7.(2017).
16. Ni, X.J., et al.,"Ultra-thin, planar, Babinet-inverted plasmonic metalenses". Light-Science & Applications,2.(2013).
17. Gayet, L. and J.L. Lenormand,"Biomimetic sensors in biomedical research. M S-Medecine Sciences",31(6-7): p. 654-659.(2015).
18. Sanders, M., et al.,"An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers". Biosensors & Bioelectronics, 61: p. 95-101.(2014).
19. Li, J., et al.,"Polarization-maintaining microfiber-based evanescent-wave sensors". Acta Physica Sinica,66(7).(2017).
20. Tsvankin, I.,"Properties of evanescent waves in anisotropic media". Journal of Seismic Exploration,17(2-3): p. 237-251.(2008).
21. 高麗婷,表面修飾不同形貌奈米銀應用於表面電漿共振有機氣體感測器之研究(2019).
22. 新聯華國際旅遊科技集團https://www.xotours.net/-c-1601/%E7%89%B9%E8%89%B2%E6%97%85%E9%81%8A-%E5%8C%97%E6%A5%B5%E5%9C%88%E6%A5%B5%E5%85%89-.html.
23. Langmuir, I.,"Oscillations in Ionized Gases". Proc Natl Acad Sci U S A, 14(8): p. 627-37.(1928).
24. Lee, B., et al.,"The use of plasmonics in light beaming and focusing. Progress in Quantum Electronics",34(2): p. 47-87.(2010).
25. “聲音"背后的原理(1) https://www.i4k.xyz/article/Robin_Pi/109185986.
26. 何一德, 自動化機械手臂在表面電漿檢測器的發展與應用(2018).
27. 盧聖中, 以掃描式近場光學顯微術量測奈米金屬狹縫穿透光行為(2012).
28. Genet, C. and T.W. Ebbesen,"Light in tiny holes". Nature, 445(7123): p. 39-46.(2007).
29. Ou, N., et al.,"Extraordinary Optical Transmission Through Dielectric Hole-Array Coated With TbFeCo Thin Film". IEEE Transactions on Magnetics,45(10): p. 4027-4029.(2009).
30. Aouani, H., et al.,"Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations". Nano Lett,11(2): p. 637-44.(2011).
31. Durnin, J., J. Miceli, Jr., and J.H. Eberly,"Diffraction-free beams. Phys Rev Lett", 58(15): p. 1499-1501.(1987).
32. 成大微奈米中心http://cfc2021.cfc.ncku.edu.tw/cmnst_e_system/index.php/facility_list/list.
33. 鄧吉雄, Electron Beam Evaporation 1. 國科會南區微系統微研究中心, (2003).
34. Okugi, T. and K. Okubo,"High-speed FDTD calculation method specialized for automotive radar analysis". IEICE Communications Express, 11(4): p. 165-170.(2022).
35. Lee, K.H., et al.,"Modeling and Investigation of a Geometrically Complex UWB GPR Antenna Using FDTD". IEEE Transactions on Antennas and Propagation,52(8): p. 1983-1991.(2004).
36. YEE, K.S.,"Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media". IEEE Transactions on Antennas and Propagation: p. pp.302-307.(1996).
37. Palik, E.D., "Handbook of Optical Constants of Solids".(1985).
38. Raether, H., "Surface Plasmons on Smooth and Rough Surfaces and on Gratings".(1988).
39. Chu, S.-C. and K. Otsuka,"Doughnut-like beam generation of Laguerre–Gaussian mode with extremely high mode purity. Optics Communications",281(6): p. 1647-1653.(2008).
40. Pirandola, S., D. Vitali, and P. Tombesi,"Trapping and cooling single atoms with far-off-resonance intracavity doughnut modes". Physical Review A,67(2).(2003).