| 研究生: |
鄭皓妤 Cheng, Hao-Yu |
|---|---|
| 論文名稱: |
使用精胺酸酶抑制劑治療癌症 Cancer Therapy by Arginase Inhibitor |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 精胺酸酶 、L-正纈胺酸 、癌症免疫治療 |
| 外文關鍵詞: | Arginase, L-norvaline, Cancer immunotherapy |
| 相關次數: | 點閱:71 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤逃避免疫攻擊造成癌症的進展和癌症免疫療法的失敗。癌細胞藉由發展出不同的機制來逃避免疫監視,例如通過分泌免疫抑制分子或募集免疫抑制細胞。骨髓來源的抑制細胞和腫瘤相關巨噬細胞都屬於免疫抑制性髓細胞,並且在腫瘤微環境中含量豐富。這些免疫抑制性髓細胞表達並分泌精胺酸酶1,將精胺酸分解為鳥胺酸,進而抑制了T細胞和NK細胞的增生與活化。此外,許多研究指出精胺酸酶1在不同的癌症中有高表達的現象。因此,抑制精胺酸酶1可以成為癌症治療的一種策略。L-正纈胺酸是一種非競爭性精胺酸酶抑製劑;然而,關於其在癌症治療上的應用仍是有限的。因此,我們想要研究L-正纈胺酸是否可以引起抗腫瘤免疫反應。在本研究中,我們發現濃度低於0.5 mg/mL的L-正纈胺酸在B16F10黑色素瘤細胞系中沒有細胞毒性,但在B16F10黑色素瘤動物模型中卻抑制了腫瘤的生長。組織免疫染色的結果表示L-正纈胺酸增加了浸潤腫瘤中的CD8+ T細胞。而流式細胞術分析顯示,在L-正纈胺酸治療後,脾臟中CD8+ T細胞和NK細胞增加,而淋巴結中僅NK細胞增加。此結果說明了L-正纈胺酸可能通過恢復T細胞的生長來抑制腫瘤的進展。此外,L-正纈胺酸與化療藥物順鉑聯合治療可增強原有的抗腫瘤反應。最後,我們進行RNA定序及生物資訊分析以探討L-正纈胺酸是否能藉由調控腫瘤細胞的基因表達而去治療癌症。結果顯示L-正纈胺酸參與調控免疫、神經及細胞分化的路徑。本研究發現L-正纈胺酸作為癌症藥物治療的可能性,並提供其潛在調控的機制。
Tumor immune escape is associated with tumor progression and the failure of cancer immunotherapy. Cancer cells develop different mechanisms to evade immune surveillance, such as by secreting immunosuppressive molecules or recruiting immunosuppressive cells. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) belong to immunosuppressive myeloid cells and are abundant in the tumor microenvironment. These immunosuppressive myeloid cells express and secret the enzyme arginase 1 (ARG1) which catabolizes arginine to ornithine and inhibits T cell proliferation through arginine degradation. Moreover, it has been reported that ARG1 is highly expressed in many cancers. Thus, the inhibition of ARG1 can be a therapeutic strategy for cancer treatment. L-norvaline is a non-competitive arginase inhibitor. However, there is limited understanding about L-norvaline on cancer treatment. Therefore, we aimed to investigate whether L-norvaline could exert an antitumor immune response. In this study, we found that L-norvaline showed no cytotoxic effect at concentration lower than 0.5 mg/mL in B16F10 melanoma cell line but reduced tumor growth in B16F10 tumor-bearing mice. Immunohistochemical staining showed that L-norvaline increased the tumor-infiltrating CD8+ T cells. The flow cytometric analysis revealed that L-norvaline treatment increased CD8+ T cells and NK cells in the spleen while only NK cells were increased in the lymph nodes. It suggested that L-norvaline might inhibit tumor progression by recovering T cells growth. In addition, combined treatment with L-norvaline and the chemotherapeutic drug cisplatin enhanced the antitumor response. Finally, we performed RNA sequencing and pathway enrichment analysis to investigate whether L-norvaline induced antitumor response by regulating gene expression of tumor cells. The results showed that L-norvaline was involved in regulating immune, nerve and cell differentiation pathways. This study implied the possibility of L-norvaline as a cancer therapeutic and provided its underlying mechanisms.
1. Sunshine, J. and J.M. Taube, PD-1/PD-L1 inhibitors. Curr Opin Pharmacol, 2015. 23: p. 32-8.
2. Johnson, C.B. and S.Y. Win, Combination therapy with PD-1/PD-L1 blockade: An overview of ongoing clinical trials. Oncoimmunology, 2018. 7(4): p. e1408744.
3. Beatty, G.L. and W.L. Gladney, Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res, 2015. 21(4): p. 687-92.
4. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
5. Liu, Y. and X. Cao, Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl), 2016. 94(5): p. 509-22.
6. Fridlender, Z.G., et al., Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell, 2009. 16(3): p. 183-94.
7. Chen, Y., et al., Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci, 2019. 26(1): p. 78.
8. Kumar, V., et al., The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol, 2016. 37(3): p. 208-220.
9. Lu, C., et al., Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer, 2019. 18(1): p. 130.
10. Rodriguez, P.C., A.C. Ochoa, and A.A. Al-Khami, Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Front Immunol, 2017. 8: p. 93.
11. Érsek, B., et al., Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cell Mol Life Sci, 2020.
12. Munder, M., Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol, 2009. 158(3): p. 638-51.
13. Bronte, V. and P. Zanovello, Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 2005. 5(8): p. 641-654.
14. Jenkinson, C.P., W.W. Grody, and S.D. Cederbaum, Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol, 1996. 114(1): p. 107-32.
15. Rodriguez, P.C., et al., L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol, 2003. 171(3): p. 1232-9.
16. Baniyash, M., TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol, 2004. 4(9): p. 675-87.
17. Rodriguez, P.C., D.G. Quiceno, and A.C. Ochoa, L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood, 2007. 109(4): p. 1568-73.
18. Lamas, B., et al., Altered functions of natural killer cells in response to L-Arginine availability. Cell Immunol, 2012. 280(2): p. 182-90.
19. Dunand-Sauthier, I., et al., Repression of arginase-2 expression in dendritic cells by microRNA-155 is critical for promoting T cell proliferation. J Immunol, 2014. 193(4): p. 1690-700.
20. Lowe, M.M., et al., Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight, 2019. 4(24).
21. Martí i Líndez, A.A., et al., Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight, 2019. 4(24).
22. Süer Gökmen, S., et al., Arginase and ornithine, as markers in human non-small cell lung carcinoma. Cancer Biochem Biophys, 1999. 17(1-2): p. 125-31.
23. Graboń, W., et al., L-arginine as a factor increasing arginase significance in diagnosis of primary and metastatic colorectal cancer. Clin Biochem, 2009. 42(4-5): p. 353-7.
24. de Boniface, J., et al., Expression patterns of the immunomodulatory enzyme arginase 1 in blood, lymph nodes and tumor tissue of early-stage breast cancer patients. Oncoimmunology, 2012. 1(8): p. 1305-1312.
25. Gökmen, S.S., et al., Significance of arginase and ornithine in malignant tumors of the human skin. J Lab Clin Med, 2001. 137(5): p. 340-4.
26. Coosemans, A., et al., Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course. Oncoimmunology, 2016. 5(4): p. e1111505.
27. Mussai, F., et al., Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood, 2013. 122(5): p. 749-58.
28. Czystowska-Kuzmicz, M., et al., Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun, 2019. 10(1): p. 3000.
29. Pudlo, M., C. Demougeot, and C. Girard-Thernier, Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev, 2017. 37(3): p. 475-513.
30. Secondini, C., et al., Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade. Oncoimmunology, 2017. 6(6): p. e1316437.
31. Steggerda, S.M., et al., Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer, 2017. 5(1): p. 101.
32. Gao, L., et al., Combination of L-Arginine and L-Norvaline protects against pulmonary fibrosis progression induced by bleomycin in mice. Biomed Pharmacother, 2019. 113: p. 108768.
33. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-20.
34. Galluzzi, L., et al., Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell, 2015. 28(6): p. 690-714.
35. de Biasi, A.R., J. Villena-Vargas, and P.S. Adusumilli, Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res, 2014. 20(21): p. 5384-91.
36. Rodriguez, P.C., et al., Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res, 2004. 64(16): p. 5839-49.
37. Chang, C.I., J.C. Liao, and L. Kuo, Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res, 2001. 61(3): p. 1100-6.
38. Domvri, K., et al., Dual photothermal MDSCs-targeted immunotherapy inhibits lung immunosuppressive metastasis by enhancing T-cell recruitment. Nanoscale, 2020. 12(13): p. 7051-7062.
39. Liu, Q., et al., The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev, 2016. 31: p. 61-71.
40. Wang, J., et al., HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene, 2020. 39(6): p. 1335-1346.
41. Polis, B., et al., L-Norvaline Reverses Cognitive Decline and Synaptic Loss in a Murine Model of Alzheimer's Disease. Neurotherapeutics, 2018. 15(4): p. 1036-1054.
42. Polis, B., et al., Arginase Inhibition Supports Survival and Differentiation of Neuronal Precursors in Adult Alzheimer's Disease Mice. Int J Mol Sci, 2020. 21(3).
43. Cui, R., et al., LPAR1 regulates the development of intratumoral heterogeneity in ovarian serous cystadenocarcinoma by activating the PI3K/AKT signaling pathway. Cancer Cell Int, 2019. 19: p. 201.
44. Xu, Y., Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel), 2019. 11(10).
45. Bagnost, T., et al., Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc Res, 2010. 87(3): p. 569-77.