簡易檢索 / 詳目顯示

研究生: 劉俊易
Liu, Jun-Yi
論文名稱: 生物組織非線性熱傳與血液灌注率之逆向預測研究
Study on Living Tissue Non-linear Heat Transfer and Inverse Estimation of Blood Perfusion Rate
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 125
中文關鍵詞: 雙相位延遲生物熱傳模型非線性血液灌注率微分轉換法逆運算預測循次法結合牛頓修正法
外文關鍵詞: DPL bio-heat transfer model, Non-linear blood perfusion rate, Difference transformation method, Inverse estimation, Sequential method combine with modified Newton-Raphson method
相關次數: 點閱:195下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用微分轉換混合有限差分法,探討在具有雙相位延遲與非線性血液灌注率之影響下,受到雷射加熱之一維與二維生物組織的溫度分布及熱損傷。爾後,將隨溫度改變的血液灌注率假定為未知待定參數,並代入循次法結合牛頓修正法之逆運算數學理論計算出修正步階至迭代收斂後,即可預測本文中的非線性血液灌注率。
    生物熱傳分析之結果顯示雙相延遲熱傳模型在不同邊界條件下之溫度分布與文獻結果一致。接著探討一維與二維非線性雙相延遲生物熱傳模型受到不同雷射熱源之熱傳分析,結果顯示雙相延遲能有效減緩熱波模型中劇烈的溫度振盪,並同時大幅降低熱損傷。
    另一方面,預測血液灌注率之研究結果顯示循次法結合牛頓修正法無須預先假設特定函數之型態,即可預測出隨溫度改變的血液灌注率。未來時間步階的增加可以大幅度提升收斂速度。適當的量測位置能有效增加預測結果之準確率。
    綜上所述,透過本文逆運算法之研究有機會發展出一套具有量測簡單、成本低的量測方法預測出隨溫度變化的血液灌注率。

    In this study, the hybrid differential transformation/finite difference method is used to analyze the temperature distributions and thermal damage, which are DPL bio-heat transfer model under the influence of the nonlinear blood perfusion rate with laser heating. Furthermore, the blood perfusion rate of temperature-dependent, assumed the unknown undetermined parameters, is substituted into sequential method combining with modified Newton-Raphson method, which is an inverse mathematical theory, to calculating the modified step until process of iteration is convergence. Following those steps can estimate the non-linear blood perfusion rate in this study.
    The results in bio-heat transfer model analysis show that temperature distributions in DPL model under different boundary conditions is consistent with the literatures. The non-linear transfer model analysis with different laser heating in one and two dimension are investigated. It indicates that the results by DPL bio-heat transfer model not only successfully suppress the severe temperature oscillations in TW model, but also reduce thermal damage.
    On the other hand, the results of estimating the non-linear blood perfusion rate show that sequential method combining with modified Newton-Raphson method can estimate the blood perfusion rate of temperature-dependent without assuming function form of specification. The increasing of future time step can greatly shorten calculation time for iteration process. The proper measurement locations can more effectively improve accuracy of estimated results.
    In summary, this study that uses sequential method combining with modified Newton-Raphson method could develop a measurement method with simple measuring and low cost to estimating the temperature-dependent blood perfusion rate.

    目 錄 摘 要 II Extended Abstract III 誌 謝 XII 目 錄 XIII 表 目 錄 XVI 圖 目 錄 XVIII 符 號 說 明 XXIV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 3 1-2.1 微分轉換法 3 1-2.2 生物熱傳之物理模型 4 1-2.3 逆向問題數學理論 6 1-3 本文架構 9 第二章 微分轉換法 11 2-1 前言 11 2-2 微分轉換之數學原理 12 2-3 微分轉換法之運算 14 2-4 T譜儲存法 17 第三章 生物組織之非線性熱傳問題 21 3-1 生物組織之非線性熱傳模型 21 3-1.1 生物組織之熱傳統御方程式 21 3-1.2 非線性血液灌注率 22 3-1.3 統御方程式之無因化 26 3-1.4 熱損傷害之估計 27 3-2 一維生物組織之非線性熱傳分析 29 3-2.1 統御方程式 29 3-2.2 微分轉換混合有限差分之迭代離散式 30 3-2.3 文獻驗證 32 3-2.4 短時高強度之表面加熱 35 3-2.5 長時低強度之表面加熱 38 3-3 二維生物組織雷射熱源之熱傳分析 41 3-3.1 統御方程式 41 3-3.2 微分轉換混合有限差分之迭代離散式 42 3-3.3 高斯分布熱源之表面加熱 44 3-4 結果與討論 50 第四章 血液灌注率之逆向預測 75 4-1 前言 75 4-2 以生物組織之熱傳模型為例說明逆運算數學理論 77 4-2.1 前問題分析 77 4-2.2 牛頓修正法 80 4-2.3 靈敏度問題求解 83 4-2.4 停止條件 86 4-2.5 計算流程 86 4-3 一維生物熱傳逆運算之預測分析 88 4-3.1 熱傳模型與非線性血液灌注率之誤差比較 88 4-3.2 目標函數與迭代次數之比較 90 4-4 二維生物熱傳逆運算之預測分析 93 4-4.1 討論不同量測數目之誤差比較 93 4-4.2 討論不同量測位置之誤差比較 94 4-4.3 討論不同加熱條件與量測條件之誤差比較 96 4-5 結果與討論 98 第五章 結論與建議 115 5-1 結論 115 5-1.1 生物組織之熱傳分析 115 5-1.2 逆向運算 115 5-2 未來研究方向與建議 117 5-2.1 生物組織之熱傳分析 117 5-2.2 逆向運算 118 參 考 文 獻 121

    參 考 文 獻
    [1] 趙家奎, 微分轉換及其在電路中的應用. 華中理工大學出版社, 1986.
    [2] J.S. Chiou, J.R. Tzeng, "Application of the Taylor Transform to Nonlinear Vibration Problems", Journal of Vibration and Acoustics, vol. 118, pp. 83-87, 1996.
    [3] C.K. Chen, S.H. Ho, "Application of Differential Transformation to Eigenvalue Problems", Applied Mathematics and Computation, vol. 79, pp. 173-188, 1996.
    [4] 劉晉嘉, 混合微分轉換與有限差分法在非線性靜電驅動, 國立成功大學機械工程學系博士論文, 2009.
    [5] L.T. Yu, C.K. Chen, "Application of Taylor Transformation to Optimize Rctangular Fins with Variable Thermal Parameters", Applied Mathematical Modelling, vol. 22, pp. 11-21, 1998.
    [6] 陳柏佑, 混合微分轉換有限差分法在非線性暫態熱傳問題之研究, 國立成功大學機械工程學系碩士論文, 2005.
    [7] 倪瑞珣, 生體表面加熱之熱波傳遞問題研究, 國立成功大學機械工程學系碩士論文, 2009.
    [8] H.S. Peng, C.L. Chen, "Application of Hybrid Differential Transformation and Finite Difference Method on the Laser Heating Problem", Numerical Heat Transfer, Part A: Applications, vol. 59, pp. 28-42, 2011.
    [9] 林松義, 應用混合微分轉換有限差分法分析非傅立葉生物熱傳問題, 國立成功大學機械工程學系博士論文, 2013.
    [10] H.H. Pennes, "Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm", Journal of Applied Physiology, vol. 85, pp. 93-122, 1948.
    [11] K. Mitra et al., "Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat", Journal of Heat Transfer, vol. 117, pp. 568-573, 1995.
    [12] C. Cattaneo, J. Kampé de Fériet, s. Académie des, Sur Une Forme de l'équation de la Chaleur éliminant le Paradoxe d'une Propagation Instantanée. 1958.
    [13] P. Vernotte, "Les Paradoxes de la Théorie Continue de léquation de la chaleur", Comptes rendus hebdomadaires des séances de l'Académie des sciences, vol. 246, pp. 3154, 1958.
    [14] D.Y. Tzou, "The Generalized Lagging Response in Small-Scale and High-Rate Heating", International Journal of Heat and Mass Transfer, vol. 38, pp. 3231-3240, 1995.
    [15] W.Q. Lu, J. Liu, Y. Zeng, "Simulation of the Thermal Wave Propagation in Biological Tissues by the Dual Reciprocity Boundary Element Method", Engineering Analysis with Boundary Elements, vol. 22, pp. 167-174, 1998.
    [16] S. Ozen, S. Helhel, O. Cerezci, "Heat Analysis of Biological Tissue Exposed to Microwave by Using Thermal Wave Model of Bio-Heat Transfer (TWMBT)", Burns : journal of the International Society for Burn Injuries, vol. 34, pp. 45-49, 2008.
    [17] Y. Zhang, "Generalized Dual-Phase Lag Bioheat Equations Based on Nonequilibrium Heat Transfer in Living Biological Tissues", International Journal of Heat and Mass Transfer, vol. 52, pp. 4829-4834, 2009.
    [18] K.C. Liu, "Analysis for High-Order Effects in Thermal Lagging to Thermal Responses in Biological Tissue", International Journal of Heat and Mass Transfer, vol. 81, pp. 347-354, 2015.
    [19] P. Kumar, D. Kumar, K.N. Rai, "Non-Linear Dual-Phase-Lag Model for Analyzing Heat Transfer Phenomena in Living Tissues during Thermal Ablation", Journal of Thermal Biology, vol. 60, pp. 204-212, 2016.
    [20] Z.W. Zhang, H. Wang, Q.H. Qin, "Meshless Method with Operator Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-Dimensional Skin Tissues", International Journal of Molecular Sciences, vol. 16, pp. 2001-2019, 2015.
    [21] N.V. Shumakov, "A Method for the Experimental Study of the Process", soviet Physics-Technical Physics, vol. 2, pp. 771, 1957.
    [22] J.V. Beck, "Calculation of Surface Heat Flux from an Integral Temperature History", ASME Journal of Heat Transfer, 62-HT-46, vol. 7, pp. 12-26, 1962.
    [23] J.V. Beck, "Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem", International Journal of Heat and Mass Transfer, vol. 5, pp. 275-286, 1970.
    [24] J.V. Beck, B. Litkouhi, C.R.S. Clair, "Efficient Sequential Solution of the Nonlinear Inverse Heat Conduction Problem", Numerical Heat Transfer, vol. 5, pp. 275-286, 1982.
    [25] C.H. Huang, M.N. Ozisik, B. Sawaf, "Conjugate Gradient Method for Determining Unknown Contact Conductance During Metal Casting", International Journal of Heat and Mass Transfer, vol. 35, pp. 1779-1786, 1992.
    [26] H.R.B. Orlande, M.N. Ozisik, "Inverse problem of estimating interface conductance between periodically contacting surfaces", Journal of Thermophysics and Heat Transfer, vol. 17, pp. 319-325, 1993.
    [27] C.Y. Yang, "Boundary Prediction of Bio-Heat Conduction in a Two-Dimensional Multilayer Tissue", International Journal of Heat and Mass Transfer, vol. 78, pp. 232-239, 2014.
    [28] C.H. Huang, Y.L. Chung, "An Inverse Problem in Determining the Optimum Shapes for Partially Wet Annular Fins Based on Efficiency Maximization", International Journal of Heat and Mass Transfer, vol. 90, pp. 364-375, 2015.
    [29] Q. Nguyen, C.Y. Yang, "Inverse Determination of Laser Power on Laser Welding with a Given Eidth Penetration by a Modified Newton–Raphson Method", International Communications in Heat and Mass Transfer, vol. 65, pp. 15-21, 2015.
    [30] T.T. Ngo, J.H. Huang, C.C. Wang, "The BFGS Method for Estimating the Interface Temperature and Convection Coefficient in Ultrasonic Welding", International Communications in Heat and Mass Transfer, vol. 69, pp. 66-75, 2015.
    [31] C.Y. Yang et al., "An Inverse Problem in Estimating the Laser Irradiance and Thermal Damage in Laser-Irradiated Biological Tissue with a Dual-Phase-Lag Model", Computer Methods in Biomechanics and Biomedical Engineering, vol. 20, pp. 446-456, 2017.
    [32] A. Zolfaghari, M. Maerefat, "Developments in Heat Transfer","Bioheat Transfer", A. Zolfaghari, Editor InTech. pp. 153-170, 2011.
    [33] J. Lang, B. Erdmann, M. Seebass, "Impact of Nonlinear Heat Transfer on Temperature Control in Regional Hyperthermia", Transactions on Biomedical Engineering, vol. 46, pp. 1129-1138, 1999.
    [34] N. Sonneck-Museux et al., "Development of A Skin Burn Predictive Model Adapted to Laser Irradiation", International Journal of Thermophysics, vol. 37, pp. 23, 2016.
    [35] P. Ziaei, H. Moosavi, A. Moradi, "Analysis of The Dual Phase Lag Bio-Heat Transfer Equation with Constant and Time-Dependent Heat Flux Conditions on Skin Surface", Thermal Science, vol. 20, pp. 1457-1472, 2016.
    [36] J.V. Beck, S. Clair, Blackwell B., R. C., Inverse Heat Conduction : Ill-Posed Problems. Wiley, New York, 1985.
    [37] Q. Nguyen, C.Y. Yang, "A Sequential Method to Determine the Surface Absorptivity in the Process of Laser Surface Hardening", International Journal of Heat and Mass Transfer, vol. 95, pp. 224-229, 2016.
    [38] B. Carnahan, H.A. Luther, Wilkes J.O., Applied Numerical Methods. Wiley, New York, 1969.

    無法下載圖示 校內:2019-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE