| 研究生: |
李師遠 Lee, Shih-Yuan |
|---|---|
| 論文名稱: |
焚化底渣再利用於燒結磚可行性之研究 Reuse of Municipal Solid Waste Incineration Bottom Ash on Sintered Bricks |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 焚化底渣 、成型壓力 、燒結溫度 、燒結磚 、廢玻璃粉 |
| 外文關鍵詞: | incinerator bottom ash, forming pressure, sintering temperature, sintered bricks, waste glass |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,生活品質提升,使人口迅速增加,隨之而來的是大量廢棄物之衍生。隨著全球環保意識抬頭,如何妥善處置及有效再利用這些廢棄物成為許多研究之主題。本研究主要將都市固體廢棄焚化之底渣,以不同之比例混合黏土及廢玻璃(R-0401),並使用四種成型壓力(4、12、20、40 MPa)及三種燒結溫度(800、900、1000°C),製成燒結磚。隨後對磚體進行工程特性試驗分析以及溶出特性分析,包括燒失量、體積變化率、吸水率、抗壓強度、密度、水溶性氯離子濃度及微結構等分析,並參考中華民國國家標準規範值(CNS382),作為後續探討不同比例、燒結溫度及成型壓力間之差異及作為建築用磚之可行性評估。
本次研究分為五個階段探討,前兩階段主要探討底渣混合黏土及再加入廢玻璃粉混合製作燒結磚,該階段之結論可得設計之底渣加黏土配比成品(底渣配比30%、40%、50%)無法符合CNS382標準。加入廢玻璃粉後除了底渣50%組別之外,其他組別可符合CNS382之標準。第三階段探討底渣粒徑大小之影響,得知在底渣沒有經過研磨的情況下,粒徑越小之底渣化學組成越不利製磚,製成之成品品質越差。第四階段固定配比,改變成型壓力及燒結溫度,交叉比較兩者對於燒結磚之影響,其結果呈現燒結溫度及成型壓力之提升,可有效增進磚體品質,且燒結溫度之影響較成型壓力大。最後階段採用第二階段之配比,並將成型壓力設定為本實驗最佳值,成功在較低燒結溫度之條件下製出符合規範之燒結磚。以上之磚成品在經過氯離子之試驗後得知其濃度遠低於標準,顯示對於環境影響之程度較小。
With science and technology booming, resulting in a great increasing population, followed by a large amount of waste. Therefore, the disposal of waste has become an issue of international concern. This study mainly discusses the use of municipal solid waste incineration bottom ash (MSWI BA) to make sintered bricks. For sintered bricks, loss on ignition, volume change rate, water absorption, compressive strength, density, and chloride ion content and scanning electron microscope tests will be carried out to evaluate the engineering application potential and the degree of environmental impact. The ultimate goal of this study is to reduce MSWI BA as much as possible by reuse.
1. Akhtar, U.S., Zaman, M.M., Islam, M.S., Nigar, F. and Hossain, M.K., “Effect of Different Types of Glasses as Fluxing Agent on the Sintering Temperature of Bricks”, Transactions of the Indian Ceramic Society, Vol. 76, pp. 128~132, 2017
2. Ardestani, M., “Compaction and solid state sintering behavior of Cu-20%wt ZnO powders”, Metallic Materials, vol. 51, pp. 367 ~371, 2013
3. Blendell, J. and Rheinheimer, W., “Solid-State Sintering”, 2020
4. Bruder-Hubscher, V., Lagarde, F., Leroy, M. J. F., Coughanowr, C., Enguehard, F., “Utilisation of bottom ash in road construction: evaluation of the environmental impact”, Vol. 19, pp. 545~556, 2001
5. Caviglia, C., Confalonieri, G., Corazzari, I., Destefanis, E., Mandrone, G., Pastero, L., Boero, R. and Pavese, A., “Effects of particle size on properties and thermal inertization of bottom ashes (MSW of Turin’s incinerator)”, Waste Management, Vol. 84, pp. 340~354, 2019
6. Chang, F.Y. and Wey, M.Y., “Comparison of the characteristics of bottom and fly ashes generated from various incineration processes”, Journal of Hazardous Materials, Vol. 138, pp. 594~603, 2006
7. Chen, W.S., Chang, F.C., Shen, Y.H., Tsai, M.S. and Ko, C.H., “Removal of chloride from MSWI fly ash”, Journal of Hazardous Materials, Vol. 237~238, pp. 116~120, 2012
8. Chen, Y., Zhang, Y., Chen, T., Zhao, Y. and Bao, S., “Preparation of eco-friendly construction bricks from hematite tailings”, Construction and Building Materials, Vol. 25, pp. 2107~2111, 2011
9. Chimenos, J.M., Segarra, M., Fernandez, M.A. and Espiell, F., “Characterization of the bottom ash in municipal solid waste incinerator”, Journal of Hazardous Materials, Vol. 64, pp. 211~222, 1999
10. Demir, I., “Reuse of waste glass in building brick production”, Waste Management & Research: The Journal for a Sustainable Circular Economy, Vol. 27, pp. 572~577, 2009
11. Dhir, R.K., Brito, J., Ghataora, G.S. and Lye, C.Q., “3 - Production and Properties of Glass Cullet”, In Woodhead Publishing Series in Civil and Structural Engineering, Sustainable Construction Materials, pp. 35-96, 2018
12. Dondi, M., “Powder Granulation and Compaction”, 2020
13. Dondi, M., Guarini, G., Raimondo, M. and Zanelli, C., “Recycling PC and TV waste glass in clay bricks and roof tiles”, Waste Management, Vol. 29, pp. 1945~1951, 2009
14. Dou, X., Ren, F., Nguyen, M.Q., Ahamed, A., Yin, K., Chan, W.P., Victor and Chang, W.C., “Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application”, Vol. 79, pp. 24~38, 2017
15. Eliche-Quesada, D., Sandalio-Pérez, J.A., Martínez-Martínez, S., Pérez-Villarejo, L. and Sánchez-Soto, P.J., “Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks”, Ceramics International, Vol. 44, pp. 4400~4412, 2018
16. Elwan, M., Abd-El Aziz, D. and El-Didamony, H., “Effect of by-pass cement dust on the properties of clay bricks”, Vol. 43, pp. 117~122, 1999
17. Fernandes, F.M., “1 - Clay bricks”, In Woodhead Publishing Series in Civil and Structural Engineering, Long-term Performance and Durability of Masonry Structures, pp. 3~19, 2019
18. Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A. and Palomo, A., “Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator”, Construction and Building Materials, Vol. 105, pp. 218~226, 2016
19. German, R.M., Suri, P. and Park, S.J, “Review: liquid phase sintering”, Journal of Materials Science, Vol.44, pp. 1~39, 2009
20. Hajjaji, M. and Mezouari, H., “A calcareous clay from Tamesloht (Al Haouz, Morocco): properties and thermal transformations”, Appl. Clay Sci., Vol. 51, pp. 507~510, 2011
21. Huber, F., Blasenbauer, D., Aschenbrenner, P. and Fellner, J., “Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash”, Waste Management, Vol. 95, pp. 593~603, 2019
22. Hyun, J.Y., Jeong, S.B., Chae, Y.B. and Kim, B.S., “Development of Fired Clay Bricks by Coal-Preparation Refuse”, Vol.114, pp.404~407, 2006
23. James. S. Reed, “Principles of ceramics processing second edition”, 1995
24. Kadir A., Sarani N., “An overview of wastes recycling in fired clay bricks”, International Journal of Integrated Engineering, Vol. 4, pp. 53~69, 2012
25. Karaman, S., Ersahin, S. and Gunel, H., “Firing temperature ad firing time influence on mechanical and physical properties of clay bricks”, Journal of Scientific and Industrial Research, Vil. 65, pp. 153~159, 2006
26. Karaman, S., Gunal, H. and Ersahin, S., “Assesment of clay bricks compressive strength using quantitative values of colour components”, Construction and Building Materials, Vol. 20, pp. 348~354, 2006
27. Kazmi, S., Abbas, S., Nehdi, M., Saleem, M. and Munir, M., “Feasibility of Using Waste Glass Sludge in Production of Ecofriendly Clay Bricks”, Journal of Materials in Civil Engineering, Vol. 29, 2017
28. Kizinievič, O., Voišnienė, V., Kizinievič, V. and Pundienė, I., “Impact of municipal solid waste incineration bottom ash on the properties and frost resistance of clay bricks”, Journal of Material Cycles and Waste Management , Vol. 24, pp. 237~249, 2022
29. Kleib, J., Aouad, G., Abriak, N.E. and Benzerzour, M., “Production of Portland cement clinker from French Municipal Solid Waste Incineration Bottom Ash”, Vol. 15, 2021
30. Kreimeyer, R., “Some notes on the firing colour of clay bricks”, Applied Clay Science, Vol. 2, pp. 175~183, 1987
31. Kuo, W.T. and Gao, Z.C., “Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt”, Applied Sciences, Vol. 8, 2018
32. Leiva, C., Arenas, C., Alonso-fariñas, B., Vilches, L.F., Peceño, B., Rodriguez-galán, M. and Baena, F., “Characteristics of fired bricks with co-combustion fly ashes”, Journal of Building Engineering, Vol. 5, pp. 114~118, 2016
33. Leriche, A., Cambier, F. and Hampshire, S., “Sintering of Ceramics”, 2017
34. Lin, D. F. and Weng, C.H., “Use the sewage sludge ash as brick material”, Journal of Environmental Engineering, Vol. 127, pp. 922~927, 2001
35. Lin, K.L., “Feasibility study of using brick made from municipal solid waste incinerator fly ash slag”, Journal of Hazardous Materials, Vol. 137, pp. 1810~1816, 2006
36. Loginova, E., Volkov, D.S., Wouw, P.M.F., Florea, M.V.A. and Brouwers, H.J.H., “Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash”, Journal of Cleaner Production, Vol. 207, pp. 866~874, 2019
37. Loryuenyong, V., Panyachai, T., Kaewsimork, K. and Siritai, C., “Effects of recycled glass substitution on the physical and mechanical properties of clay bricks”, Waste Management, Vol. 29, pp. 2717~2721, 2009
38. Luo, H.L., Chen, S.H., Lin, D.F. and Cai, X.R., “Use of incinerator bottom ash in open-graded asphalt concrete”, Construction and Building Materials, Vol. 149, pp. 497~506, 2017
39. Maldonado-Alameda, J. Giro-Paloma, A. Svobodova-Sedlackova, J. Formosa, J.M. Chimenos, “Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size”, Journal of Cleaner Production, Vol. 242, 2020
40. Mantovani, L.; Tribaudino, M.; Matteis, C.D.; Funari, V., “Particle Size and Potential Toxic Element Speciation in Municipal Solid Waste Incineration (MSWI) Bottom Ash”, Sustainability, Vol. 13, 2021
41. Mehr, J., Haupt, M., Skutan, S., Morf, L., Adrianto, L.R., Weibel, G. and Hellweg, S., “The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash”, Waste Management, Vol. 119, pp. 330~341, 2021
42. Monteiro, R.C.C. and Lima, M.M.R.A., “Effect of compaction on the sintering of borosilicate glass/alumina composites”, Journal of the European Ceramic Society, Vol. 23, pp. 1813~1818, 2003
43. Moon, E., Kim, S., Han, M., Lee, E., Heo, J., & Lee, H., “A New Method for Measurement of the Vitrification Rate of Earthenware Texture by Scanning Electron Microscope”, Microscopy and Microanalysis, Vol. 19, pp. 162~166., 2013
44. Mouiya, M., Bouazizi, A., Abourriche, A., Khessaimi, Y.E., Benhammou, A., Hafiane, Y.E., Taha, Y., Oumam, M., Abouliatim, Y., Smith, A. and Hannache, H., “Effect of sintering temperature on the microstructure and mechanical behavior of porous ceramics made from clay and banana peel powder”, Results in Materials, Vol. 4, 2019
45. Okunade, E.A., “The Effect of Wood Ash and Sawdust Admixtures on the Engineering Properties of a Burnt Laterite-Clay Brick”, Journal of Applied Sciences, Vol. 8, pp. 1042-1048, 2008
46. P N, M.L., Sreeja, M., “Utilization of sludge in manufacturing Energy Efficient Bricks”, IOSR Journal of Mechanical and Civil Engineering, Vol. 11, pp. 70~73, 2014
47. Pérez-Martínez, S., Giro-Paloma, J., Maldonado-Alameda, A., Formosa, J., Queralt, I. and Chimenos, J.M., “Characterisation and partition of valuable metals from WEEE in weathered municipal solid waste incineration bottom ash, with a view to recovering”, Journal of Cleaner Production, Vol. 218, pp. 61~68, 2019
48. Pérez-Villarejo, L., Martínez-Martínez, S., Carrasco-Hurtado, B., Eliche-Quesada, D., Ureña-Nieto, C. and Sánchez-Soto, P.J., “Valorization and inertization of galvanic sludge waste in clay bricks”, Applied Clay Science, Vol. 105~106, pp. 88~99, 2015
49. Phonphuak, N., Kanyakam, S. and Chindaprasirt, P., “Utilization of waste glass to enhance physical–mechanical properties of fired clay brick”, Journal of Cleaner Production, Vol. 112, pp. 3057~3062, 2016
50. Riaz, M.H., Khitab, A. and Ahmed, S., “Evaluation of sustainable clay bricks incorporating Brick Kiln Dust”, Journal of Building Engineering, Vol. 24, 2019
51. Shih, H.C. and Ma, H.W., “Assessing the health risk of reuse of bottom ash in road paving”, Chemosphere, Vol. 82 pp. 1556~1562, 2011
52. Shim, Y.S., Kim, Y.K., Kong, S.H., Rhee, S.W. and Lee, W.K., “The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash”, Waste Management, Vol. 23, pp. 851~857, 2003
53. Smith, J. P., and Messing, G.L., “Sintering of Bimodally Distributed Alumina Powders”, Journal of the American Ceramic Society, Vol. 67, pp. 238~242, 1984
54. Sutcu, M., Alptekin, H., Erdogumus, E., Er, Y. and Gencel, O., “Characteristics of fired clay bricks with waste marble powder addition as building materials”, Construction and Building Materials, Vol. 82, pp. 1~8, 2015
55. Suvorova, O., Kumarova, V., Nekipelov, D., Selivanova, E., Makarov, D. and Masloboev, V., “Construction ceramics from ore dressing waste in Murmansk region, Russia”, Construction and Building Materials, Vol. 153, pp. 783~789, 2017
56. Tang, P., Florea, M. V. A., Spiesz, P. R. and Brouwers, H. J. H., “The application of treated bottom ash in mortar as cement replacement”, In Proceedings of the EurAsia Waste Management Symposium 2014, pp. 1077-1082, 2014
57. Taurino, R., Karamanova, E., Barbieri, L., Atanasova-Vladimirova, S., Andreola, F. and Karamanov, A., “New fired bricks based on municipal solid waste incinerator bottom ash”, Waste Management & Research: The Journal for a Sustainable Circular Economy, Vol. 35, pp. 1055~1063, 2017
58. The Brick Association, “Manufacturing of Brick”, TECHNICAL NOTES on brick construction, pp. 1~7, 2006
59. The Brick Association, “Specifications for and Classification of Brick”, TECHNICAL NOTES on brick construction, pp. 1~13, 2007
60. Tripathi, M. and Chauhan, V.B., “Evaluation of waste glass powder to replace the clay in fired brick manufacturing as a construction material”, Innovative Infrastructure Solutions, 2021
61. Ukwatta, A., Mohajerani, A., Setunge, S. and Eshtiaghi, N., “Possible use of biosolids in fired-clay bricks”, Construction and Building Materials, Vol. 91, pp. 86~93, 2015
62. Wang, S., Gainey, L., Baxter, D., Wang, X., Mackinnon, I.D.R. and Xi, Y., “Thermal behaviours of clay mixtures during brick firing: A combined study of in-situ XRD, TGA and thermal dilatometry”, Construction and Building Materials, Vol. 299, 2021
63. Wu, M.H., Lin, C.L., Huang, W.C. and Chen, J.W., “Characteristics of pervious concrete using incineration bottom ash in place of sandstone graded material”, Construction and Building Materials, Vol. 111, pp. 618~624, 2016
64. Xu, L.L., Guo, W., Wang, T., Yang, N.R., “Study on fired bricks with replacing clay by fly ash in high volume ratio”, Construction and Building Materials, Vol. 19, pp. 243~247, 2005
65. Yang, R., Liao, W.P. and Wu, P.H., “Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan”, Journal of Environmental Management, Vol. 104, pp. 67~76, 2012
66. Zhao, C., Lin, S., Zhao, Y., Lin, K., Tian, L., Xie, M. and Zhou, T., “Comprehensive understanding the transition behaviors and mechanisms of chlorine and metal ions in municipal solid waste incineration fly ash during thermal treatment”, Science of The Total Environment, Vol. 807, 2022
67. 王弘祐、何佳樺、梁洲輔、賴俊彥、陳仙州,「垃圾焚化爐底渣取代量對透水瀝青混凝土性質之影響」,鋪面工程,第11卷2期,pp. 9~16,2013
68. 行政院環保署,「垃圾焚化廠焚化底渣再利用管理方式」,2022
69. 行政院環保署,「循環經濟-資源循環網」,2022
70. 行政院環保署,「焚化再生粒料流向管理系統」,2022
71. 行政院環保署,「焚化廠營運管理資訊系統」,2021
72. 行政院環保署,「環保統計查詢網」,2022
73. 行政院環保署,「環境主題」,2021
74. 何寬宏,「垃圾焚化底渣吸附鉻酸離子之可行性研究」,國立成功大學環境工程研究所碩士論文,2000
75. 吳政育,「以淨水汙泥及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究」,國立中央大學環境工程研究所碩士論文,2015
76. 李明國,「研磨的機械化學作用促進焚化飛灰重金屬穩定化及燒結資源化之研究」,淡江大學水資源及環境工程學系博士班學位論文,2010
77. 李建中、李釗、鄭清江、何啟華,「垃圾焚化灰燼之大地工程特性」,中國土木水利工程學刊,第八卷,第三期,pp.397~404,1996
78. 沈怡文,「臺灣傳統瓦窯燒製程序之研究」,中原大學建築學系碩士學位論文,2004
79. 周耀鑾、黃依典,「建築材料學」,科教圖書出版社,1979
80. 林志棟、袁家偉、楊宗哲,「焚化爐底碴之再利用」,鋪面工程,第4卷2期,pp.63~75,2006
81. 林凱隆,鄭敬融,「太陽能板廢玻璃資材化燒結處理再利用為環保地磚之研究」,臺灣鑛業,第64卷3期,pp. 38~48, 2012
82. 林凱隆、張仁杰、鄭敬融,「太陽能板廢玻璃和黏土共同燒製紅磚之研究」,環境保護,32卷2期,pp.99~106,2009
83. 林登峰、詹明勇、王昱凱、王偉筑,「南台灣垃圾焚化爐底渣使用現況分析」,鋪面工程,第15卷2期,pp.95~104,2017
84. 林毓舜,「化學組成對燒結磚之研究」,國立成功大學資源工程研究所碩士論文,2018
85. 林鴻章,「以淨水汙泥燒製環保磚之研究」,朝陽科技大學環境工程與管理研究所碩士論文,2014
86. 翁振源,「汙泥灰渣資源化製磚與燒結特性之研究」,國立成功大學資源工程學系碩士論文,2016
87. 高永駿,「含垃圾焚化底渣瀝青混凝土之環境性質研究」,中華大學土木工程研究所碩士論文,2005
88. 高雄市環保局,2022
89. 張藝騰,「鹽泥再利用於燒結磚可行性之研究」,國立成功大學資源工程研究所碩士論文,2020
90. 陳正中,「廢棄物再利用於製磚原料之操作參數與燒結特性研究」,國立成功大學資源工程研究所博士論文,2018
91. 陳宜晶,「利用添加劑提昇淨水汙泥燒結之材料品質研究」,逢甲大學環境工程與科學學系碩士論文,2004
92. 陳睿甫,「鹽泥與焚化底渣再利用於CLSM可行性之研究」,國立成功大學資源工程研究所碩士論文,2019
93. 陳雨詩,「粗粒徑垃圾焚化底渣燒製高強度輕質骨材之研究」,淡江大學水資源及環境工程學系碩士班碩士論文,2004
94. 程道腴,「工業陶瓷」,徐氏基金會,1990
95. 新北市政府環保局,2022
96. 廢玻璃再利用技術宣導手冊,行政院環保署,國立台北科技大學
97. 鄭淑芬,「工業區汙水處理廠汙泥資源化之研究-燒結製磚」,國立台北科技大學環境工程與管理研究所碩士班論文,2008