研究生: |
諸穎澔 Chu, Ying-hao |
---|---|
論文名稱: |
具力感知外罩之類人形機械手臂之智慧型阻抗控制 Intelligent Impedance Control of an Anthropomorphic Robot Arm with a Force-detectable Surface Cover |
指導教授: |
蔡清元
Tsay, Tsing-Iuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 類人形機械手臂 、智慧型阻抗控制 、順應性控制 |
外文關鍵詞: | Intelligent impedance control, compliant motion control, Anthropomorphic robot arm |
相關次數: | 點閱:107 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,機器人已逐漸涉及醫療保健、家庭生活與社會福利。當這些社會需求增加時,人們將會迫切地需要在人類與機器人間擁有安全機制界面之機器人。本論文的目標在於建構一隻能夠與人類共存的類人形機械手臂。此一具有七自由度之機械手臂乃由肩部、肘部與腕部所組成,且在前臂設計了一個擁有可感知外力之外罩。本論文提出基於智慧型阻抗控制之控制策略,藉以產生順應性運動。最後,以實驗來驗證本論文所建構之具力感知外罩之類人形機械手臂,所做的實驗包含自由空間運動及順應性運動控制。
In recent years, robots have been gradually involving in health care, home life and social welfare. As these societal needs increase, the creation of robots with the capability of safe physical human-robot interaction will be required. The objective of this thesis is to design an anthropomorphic robot arm that can share the environment with humans. The constructed robot arm with 7 degrees of freedom comprises shoulder, elbow and wrist joints. A force-detectable surface cover is designed and installed on the forearm. A control strategy based on an intelligent impedance controller is also proposed to create compliant motion. Finally, the theoretical results are experimentally verified on the constructed anthropomorphic robot arm with a force-detectable surface cover. Specific experimental demonstrations include unconstrained maneuvers and compliant motion control.
[1] A. K. Bejczy, “Robot Arm Dynamics and Control,” JPL, California Institute of Technology, TM 33-69, 1974.
[2] C. Chevallerean and W. Khalil, “Efficient Method for the Calculation of the Pseudo Inverse Kinematic Problem,” Proceedings of the IEEE Conference on Robotics and Automation, pp. 1842-1848, 1984.
[3] J. J. Craig, Introduction of Robotics Mechanics and Control, Addison-wesley, 1986.
[4] M. Friedman, A. Kandel, Fundamentals of Computer Numerical Analysis, CRC Press, 2000.
[5] S. Hashimoto, S. Narita, H. Kasahara, A. Takanishi, S. Sugano, K. Shirai and T. Kobayashi, et.al., “Humanoid Robots in Waseda University -Hadaly-2 and Wabian-,” Proceedings of the IARP First International Workshop on Humanoid and Human Friendly Robotics, pp. 1-2, 1998.
[6] Y. Hayashibara, Y. Sonoda, T. Takubo, H. Arai and K. Tanie, “Assist System for Carrying a Long Object with a Human-analysis of a Human Cooperative Behavior in the Vertical Direction-,” Proceedings Of the IEEE International Cod. on Intelligent Robots and Systems, Vol. 3, pp. 695-700, 1999.
[7] K. Hirai, M. Hirose, Y. Haikawa and T. Takenaka, “The Development of Honda Humanoid Robot,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1321- 1326, 1998.
[8] N. Hogan, “On the Stability of Manipulators Performing Contact Tasks,” IEEE Journal Robotics Automation, Vol. 4, pp. 667-686, 1988.
[9] N. Hogan, “Stable Execution of Contact Tasks Using Impedance Control,” in Proceedings IEEE Conference Robotics Automation, pp. 1047-1054, 1987.
[10] N. Hogan, “Impedance Control: an Approach to Manipulation: Part I - Theory, Part II - Implementation, Part III - Applications,” ASME Journal Dynamic Systems, Measure, Control, vol. 107, pp. 1-24, 1985.
[11] M. Inaba, Y. Hoshino and H. Inoue, “A Full-Body Tactile Sensor Suit Using Electrically Conductive Fabric and Strings,” Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 450-457, 1996.
[12] H. Iwata, H. Hoshino, T. Morita and S. Sugano, “Force Detectable Surface Covers for Humanoid Robots,” Proceedings of IEEU ASME International Conference on Advanced Intelligent Mechatronics, pp. 1205-1210, 2001.
[13] H. Iwata, S. Kayaba, T. Morita and S. Sugano, “Design of Humanoid Surface Sensor for Tactile Interference with Human,” Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 549-554, 1998.
[14] O. Katib, K. Yokoi, O. Brock, K. Chang and A. Casal, “Robots in Human Environments: Basic Autonomous Capabilities,” International Journal of Robotics Research, pp. 684-696, 1999.
[15] W. Khalil and J. F. Kleinfinger, “A New Geometric Notation for Open and Closed Loop Robots,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1174-1180, 1986.
[16] M. Koga, K. Kosuge, K. Furuta and K. Nosaki, “Coordinated Motion Control of Robot Arms based on the Virtual Internal Model,” in the IEEE Transactions on Robotics and Automation, Vol. 8, pp. 77-85, 1992.
[17] C. H. Lai, Design and Control of an Anthropomorphic Robot, M. S. Thesis, Department of Mechanical Engineering, Nation Cheng Kung University, 2003.
[18] F. L. Lewis, “Neural Network Control of Robot Manipulators,” IEEE Expert, pp. 64-75, 1996.
[19] F. L. Lewis, K. Liu and A. Yesildirek, “Multilayer Neural-net Robot Controller with Guaranteed Tracking Performance,” IEEE Transactions Neural Networks, Vol. 7, No. 2, pp. 388-399, March, 1996.
[20] F. L. Lewis, K. Liu and A. Yesildirek, “Neural Net Robot Controller with Guaranteed Tracking Performance, “IEEE Transactions Neural Networks, Vol. 6, No. 3, pp. 703-715, May, 1995.
[21] V. J. Lumelsky and E. Cheung, “Real-time Collision Avoidance in Teleoperated Whole-sensitive Robot Arm Manipulations,” IEEE Transactions Systems, Man and Cybernetics, Vo1. 23, pp. 194-203, 1993.
[22] W.-S. Lu and Q.-H. Meng, “Impedance Control with Adaptation for Robotic Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, pp. 408-415, 1991.
[23] T. Morita and S. Sugano, “Safety Materials and Control of Human-cooperative Robots,” Journal of Robotics and Mechatronics, Vo1. 9, No. 1, pp. 33-40, 1997.
[24] E. D. Orin and W. W. Schrader, “Efficient Computation of the Jacobian for Robot Manipulator,” The International Journal of Robotics Research, Vol. 3, No. 4, pp. 66-75, 1984.
[25] R. P. Paul, “Problems and Research Issues Associated with the Hybrid Control of Force and Displacement,” in Proceedings IEEE Conference Robotics Automation, pp. 1966-1971, 1987. Lu2
[26] R. P. Paul, “Modeling, Trajectory Calculation, and Servoing of a Computer Controlled Arm,” Stanford Artificial Intelligence Laboratory, Stanford University, Memo AIM-177, 1972.
[27] J. K. Salisbury, W. T. Townsend, B. S. Everman and D. M. DiPietro, “Preliminary Design of a Whole-Arm Manipulation System (WAMS),” Proceedings of the IEEE International Conference on Robotics and Automation, 1988.
[28] S. Setiawan, S. H. Hyon, J. Yamaguchi and A. Takanishi, “Physical Interaction between Human and a Bipedal Humanoid Robot -Realization of Human-follow Walking-,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 361-367, 1999.
[29] J.-J. E. Slotine and W. Li, “Adaptive Manipulator Control: A Case Study,” in Proceedings IEEE International Conference Robotics Automation, pp. 1392- 1400, 1987.
[30] C. H. Wang, Intelligent Control of Constrained Robot Manipulators, M. S. Thesis, Department of Mechanical Engineering, National Cheng Kung University, 2000.
[31] J. K. Waldron, W. S. Liang and S. J. Bolin, “A Study of the Jacobian Matrix of Serial Manipulator,” Transactions of ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 107, pp. 230-238, June, 1985.
[32] D. E. Whitney, “Historical Perspective and State of the Art in Robot Force Control,” in Proceedings IEEE Conference Robotics Automation, pp. 262-268, 1985.