| 研究生: |
吳莉塔 Yulita, |
|---|---|
| 論文名稱: |
膽固醇液晶複印膜的製備與應用 Fabrication and Application of Cholesteric Liquid Crystal Imprinted Films |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 光子晶體 、感測器 、複印膜 、膽固醇液晶 |
| 外文關鍵詞: | photonic, sensor, imprinting films, cholesteric liquid crystal |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中我們合成了一種新穎性單體4-(acryloyloxyhexyloxy) biphenyl-4'-carboxylic acid (6C) 使具有共振末端,用於感測化學品。利用市售架橋劑RM257,液晶單體RM105,手性摻混物CB15,光起始劑IRG-184與所合成之單體6C,在最佳重量比分別為40.8:34.0:23.5:0.1:1.5進行摻混,在室溫及膽固醇液晶相下經由光聚合,複印出光子晶體薄膜。利用光纖反射光譜儀偵測此光子晶體薄膜反射波段。為了探討光聚合能量對前、後基板的影響,利用掃描電子顯微鏡探討前、後兩側光聚合複印薄膜的微觀結構影響。本研究所複印的光子晶體薄膜,對雙酚A具有感測效應,而且具有分辨脂肪醇及芳香醇BPA的能力。此結果歸因於,高分子基質中的長共振末端與雙酚A中的共振結構形成相互作用,因而使複印膜具有分辨脂肪醇與芳香醇的能力。本研究製做了複印膜對BPA的校正曲線,而且由實驗結果找出了此複印膜的最低感測極限濃度。
In order to imprint cholesteric constructions, 4-(acryloyloxyhexyloxy) biphenyl-4’-carboxylic acid (6C) was synthesized. The cholesteric liquid crystal imprinted sample cells were fabricated via photo-polymerization. Commercially available liquid crystal crosslinker RM 257, RM 105 monomer, chiral dopant CB 15 and photo-initiator irgacure 184 were mixed with the synthesized monomer 6C with optimal weight ratio of 40.9, 34.0, 23.5, 0.1 and 1.5, respectively. The reflection band of the imprinted sample cells were investigated using optical fiber probe spectrometer. To study the curing energy difference at either side of sample film, both front and back side morphologies after photo-polymerization were investigated using SEM. The fabricated sample films show effective detection of bisphenol A (BPA) as well as the sensing selectivity from aliphatic alcohols. The results indicate that the fabricated sample films having conjugation terminal lead to the appearance of selectivity from aliphatic and aromatic alcohols. A BPA sensing calibration curve of the fabricated sample film was estimated and the limited minimum concentration was calculated experimentally.
[1] Hasegawa, M., Liquid Crystal Displays: fundamental physics and technologies, by Robert H. Chen. Liquid Crystals Today, 2012. 21(3): p. 71-73.
[2] Aragay, G., J. Pons, and A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev, 2011. 111(5): p. 3433-58.
[3] Bansod, B., et al., A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron, 2017. 94: p. 443-455.
[4] Sutarlie, L., J.Y. Lim, and K.L. Yang, Cholesteric liquid crystals doped with dodecylamine for detecting aldehyde vapors. Anal Chem, 2011. 83(13): p. 5253-8.
[5] Bisoyi, H.K. and Q. Li, Liquid Crystals, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc.
[6] Garcia-Amors, J. and D. Velasco, Polysiloxane Side-Chain Azobenzene-Containing Liquid Single Crystal Elastomers for Photo-Active Artificial Muscle-Like Actuators. 2012.
[7] Yang, D.-K. and S.-T. Wu, Liquid Crystal Physics, in Fundamentals of Liquid Crystal Devices. 2014, John Wiley & Sons, Ltd. p. 1-50.
[8] Schoff, C.K. and P. Kamarchik, Rheological Measurements, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc.
[9] Cammann, K., et al., Chemical and Biochemical Sensors, in Handbook of Analytical Techniques. 2008, Wiley-VCH Verlag GmbH. p. 951-1059.
[10] Lopez-Higuera, J.-M., L. Rodriguez-Cobo, and A. Cobo. Optical Sensors: A Comprehensive Approach. in Advanced Photonics 2015. 2015. Boston, Massachusetts: Optical Society of America.
[11] McDonagh, C., C.S. Burke, and B.D. MacCraith, Optical Chemical Sensors. Chemical Reviews, 2008. 108(2): p. 400-422.
[12] Barsan, N., et al., Chemical and Biochemical Sensors, 1. Fundamentals, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
[13] Thévenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosensors and Bioelectronics, 2001. 16(1): p. 121-131.
[14] Gauglitz, G. and N.J. Goddard, Direct Optical Detection in Bioanalytics, in Handbook of Spectroscopy. 2014, Wiley-VCH Verlag GmbH & Co. KGaA. p. 1115-1158.
[15] Pérez, M.A., O. González, and J.R. Arias, Optical Fiber Sensors for Chemical and Biological Measurements, in Current Developments in Optical Fiber Technology, S.W. Harun and H. Arof, Editors. 2013, InTech: Rijeka. p. Ch. 10.
[16] Narayanaswamy, R., Optical chemical sensors and biosensors for food safety and security applications. Acta biologica Szegediensis, 2006. 50(3-4): p. 105.
[17] Ge, J. and Y. Yin, Responsive photonic crystals. Angew Chem Int Ed Engl, 2011. 50(7): p. 1492-522.
[18] Mulder, D.J., A.P.H.J. Schenning, and C.W.M. Bastiaansen, Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C, 2014. 2(33): p. 6695-6705.
[19] Chen, C.H., et al., Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions. Anal Chem, 2015. 87(8): p. 4546-51.
[20] Moirangthem, M., et al., An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum. Advanced Functional Materials, 2016. 26(8): p. 1154-1160.
[21] Chang, C.-K., et al., Alcohol-Responsive, Hydrogen-Bonded, Cholesteric Liquid-Crystal Networks. Advanced Functional Materials, 2012. 22(13): p. 2855-2859.
[22] Shibaev, P.V., et al., Color Changing Cholesteric Polymer Films Sensitive to Amino Acids. Macromolecules, 2006. 39(12): p. 3986-3992.
[23] Chapin, R.E., et al., NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res B Dev Reprod Toxicol, 2008. 83(3): p. 157-395.
[24] Staples, C., et al., A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 1998. 36(10): p. 2149-2173.
[25] Bisphenol A [MAK Value Documentation, 2011], in The MAK-Collection for Occupational Health and Safety. 2002, Wiley-VCH Verlag GmbH & Co. KGaA.
[26] Völkel, W., et al., Metabolism and Kinetics of Bisphenol A in Humans at Low Doses Following Oral Administration. Chemical Research in Toxicology, 2002. 15(10): p. 1281-1287.
[27] Dodson, R.E., et al., Endocrine Disruptors and Asthma-Associated Chemicals in Consumer Products. Environmental Health Perspectives, 2012. 120(7): p. 935-943.
[28] Geens, T., et al., Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ, 2012. 435-436: p. 30-3.
[29] Efsa Panel on Food Contact Materials, E.F., et al., Safety assessment of the substance [3-(2,3-epoxypropoxy)propyl]trimethoxy silane, for use in food contact materials. EFSA Journal, 2017. 15(10): p. e05014-n/a.
[30] Nam, S.H., Y.M. Seo, and M.G. Kim, Bisphenol A migration from polycarbonate baby bottle with repeated use. Chemosphere, 2010. 79(9): p. 949-52.
[31] Rajasarkka, J., et al., Drinking water contaminants from epoxy resin-coated pipes: A field study. Water Res, 2016. 103: p. 133-140.
[32] Legeay, S. and S. Faure, Is bisphenol A an environmental obesogen? Fundam Clin Pharmacol, 2017. 31(6): p. 594-609.
[33] Liu, J.-H., C.-D. Hsieh, and H.-Y. Wang, Preparation and characterization of chiral polyacrylates end-capped with bornyl groups in the side chains. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(5): p. 1075-1092.
[34] Mitov, M. and N. Dessaud, Going beyond the reflectance limit of cholesteric liquid crystals. Nat Mater, 2006. 5(5): p. 361-4.
[35] Mitov, M., Cholesteric liquid crystals with a broad light reflection band. Adv Mater, 2012. 24(47): p. 6260-76.