簡易檢索 / 詳目顯示

研究生: 吳依貞
Wu, Yi-Chen
論文名稱: 河流-河口系統物質通量及循環:珠江沉積物衰變系列不平衡之研究
Material flux and cycling in riverine-estuary system: a constrain from decay-series disequilibria in Pearl-River sediments
指導教授: 羅尚德
Luo, Shangde
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 42
中文關鍵詞: 衰變系不平衡鈾-釷-鐳同位素河口沉積物地下水大陸風化
外文關鍵詞: radioactive disequilibrium, U-Th-Ra isotopes, estuary sediment, subterranean groundwater, weathering
相關次數: 點閱:143下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 河川匯集而成的入海口為上游風化後陸源物質經由河水或地下水進入海洋的管道,因此,河口成為全面性研究大陸對海洋的物質輸送及地球化學遷移的重要區域,為評估河流-河口的物質通量及生物地球化學行為,本研究在中國南方珠江河口採集沉積物岩芯並據深度不同來測量衰變系同位素以瞭解其分佈。由α譜儀測得沉積速率為4.4±1.2公分/年和γ譜儀所測得是3.8±1.2公分/年,藉此訂定此岩芯的年代。另外,Th-228相對於Th-232的虧損顯示,對Th-228的母核種Ra-228有地下水大量的遷移行為。Th-230/U-234比值多大於一,表示在流域內風化期間U相對於Th的流失較多,且在此岩芯中發現U-234富集於部分深度的層位中,顯示可能在還原環境下有自生鈾的貢獻;這結果與同層位的U-238/Th-232和U-234/U-238比值、總有機碳及Th-232通量出現類同性的變化,同時也伴隨著周期性乾濕季的氣候變化,也可能導因珠江地區的經濟相關產業的快速發展所造成的人為汙染。我們的研究顯示,放射性同位素於河流-河口沉積物的測量上,提供一個對於發生在大陸與海洋交界的物理、化學及生物過程極有效的工具。

    Estuary is an important land-sea interface where active biogeochemical processes occur as a result of river in-fluxes of dissolved and particulate weathering materials from the continent to the ocean. To assess these in-fluxes and the associated biogeochemical processes, a core was collected from the estuary of Pearl River in south China and was measured for the distributions of the decay-series radioisotopes with depth. The sedimentation rate was dated by using excess Pb-210 to be 4.4±1.2 cm/yr (α-spectrometer) and 3.8±1.2 cm/yr (γ-spectrometer), respectively. The thorium isotope measurements exhibit significant deficiency of Th-228 relative to Th-232, implying a significant out-flux of Ra-228 out of sediments by subterranean groundwater discharge. The Th-230/U-234 activity ratios are mostly greater than one, resulting from preferential loss of uranium relative to thorium during the weathering of source rock in the drainage region. Excess U-234 relative to Th-230 as found at some depths indicates an enrichment of authigenic uranium in sediments under reducing conditions. These results, together with the measurements of U-238/Th-232 and U-234/U-238 in the same core, clearly recorded a concordant change in the continental weathering flux, the POC flux, and the redox conditions in Pear-River sediments during the past decades, a change which may attributed to the dual causes of the decadal wet/dry climate changes in the region as well as the anthropogenic contaminations of the Pearl River associated with the rapid regional industrial/economic development. Our study shows that the decay series radioisotopes in estuarine sediments provide a useful tool for understanding the physical, chemical, and biological processes occurred in the continents and/or at the land-sea boundary.

    摘要 ... I Abstract ... II Table of Contents ... III List of Tables ... V List of Figures ... VI Chapter 1. Introduction ... 1 Chapter 2. Materials and Methods ... 2 2.1. Study area and sampling ... 2 2.2. Sampling processing ... 4 2.3. TC and TOC analysis ... 7 2.4. 210Pbex analysis ... 7 2.4.1. Alpha spectrometric methods ... 7 2.4.2. Gamma spectrometric methods ... 8 2.5. U and Th isotope analysis ... 8 Chapter 3. Results ... 9 3.1. TOC and TIC ... 9 3.2. 210Pbex ... 10 3.3. U- and Th isotopes ... 13 Chapter 4. Discussion ... 16 4.1. Dating of sedimentation rate with 210Pbex ... 16 4.2. Th-230/U-234 vs. U-234/U-238 relationship in sediment core ... 18 4.3. Mechanisms controlling Th-230/U-238 vs. Th-228/Th-232 in sediments ... 20 4.4. Mechanisms controlling the distribution of TOC in sediments ... 22 4.5. Concordant changes of TOC, Th-232 fluxes and redox condition in sediments ... 23 4.6. Subterranean groundwater discharge revealed by using Th-228/Th-232 and Ra-228/Th-232 ... 27 Chapter 5. Conclusions ... 28 Reference ... 29 Appendix ... 33 Appendix A: Supplementary research background on the U-series studies in riverine-estuarine system ... 33 Appendix B: Supplementary background on analytical methods. ... 36 Appendix C: U-238, U-235 and Th-232 decay series. ... 39 Appendix D: A presentation on 2009 ocean science meeting of National Science Council. ... 41 Appendix E: A presentation on 2009 fall meeting of American Geophysical Union (AGU). ... 42

    Andersson, P.S., Porcelli, D., Wasserburg, G.J., Ingri, J., 1998. Particle transport of U-234-U-238 in the Kalix River and in the Baltic Sea. Geochimica Et Cosmochimica Acta, 62(3): 385-392.
    Begy, R., Cosma, C., Timar, A., 2009. Recent changes in Red Lake (Romania) sedimentation rate determined from depth profiles of Pb-210 and Cs-137 radioisotopes. Journal of Environmental Radioactivity, 100(8): 644-648.
    Callahan, J. et al., 2004. Distribution of dissolved organic matter in the Pearl River Estuary, China. Marine Chemistry, 89(1-4): 211-224.
    Chabaux, F., Riotte, J., Clauer, N., France-Lanord, C., 2001. Isotopic tracing of the dissolved U fluxes of Himalayan rivers: Implications for present and past U budgets of the Ganges-Brahmaputra system. Geochimica Et Cosmochimica Acta, 65(19): 3201-3217.
    Chabaux, F., Riotte, J., Dequincey, O., 2003. U-Th-Ra fractionation during weathering and river transport, Uranium-Series Geochemistry. Reviews in Mineralogy & Geochemistry. Mineralogical Soc America, Washington, pp. 533-576.
    Charette, M.A., Sholkovitz, E.R., Hansel, C.M., 2005. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments. Geochimica Et Cosmochimica Acta, 69(8): 2095-2109.
    Chen, S.J. et al., 2006. Distribution and mass inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in sediments of the Pearl River Estuary and the northern South China Sea. Environmental Science & Technology, 40(3): 709-714.
    Cherdyntsev, V.V., 1971. Uranium-234. Uranium-234, 234 pp.
    Dai, M.H. et al., 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 102(1-2): 159-169.
    Dosseto, A., Bourdon, B., Gaillardet, J., Allegre, C.J., Filizola, N., 2006a. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series. Geochimica Et Cosmochimica Acta, 70(1): 71-89.
    Dosseto, A., Bourdon, B., Gaillardet, J., Maurice-Bourgoin, L., Allegre, C.J., 2006b.Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes. Earth and Planetary Science Letters, 248(3-4): 759-771.
    Dosseto, A., Bourdon, B., Turner, S.P., 2008. Uranium-series isotopes in river materials: Insights into the timescales of erosion and sediment transport. Earth and Planetary Science Letters, 265(1-2): 1-17.
    Dosseto, A., Turner, S.P., Douglas, G.B., 2006c. Uranium-series isotopes in colloids and suspended sediments: Timescale for sediment production and transport in the Murray-Darling River system. Earth and Planetary Science Letters, 246(3-4): 418-431.
    Granet, M., Chabaux, F., Stille, P., France-Lanord, C., Pelt, E., 2007. Time-scales of sedimentary transfer and weathering processes from U-series nuclides: Clues from the Himalayan rivers. Earth and Planetary Science Letters, 261(3-4): 389-406.
    He, B. et al., 2010. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China. Marine Chemistry, 119(1-4): 52-64.
    Hedges, J.I., Stern, J.H., 1984. Carbon and nitrogrn determination of carbonate-containing solids. Limnology and Oceanography, 29(3): 657-663.
    Masque, P. et al., 2002. Sediment accumulation rates and carbon fluxes to bottom sediments at the Western Bransfield Strait (Antarctica). Deep-Sea Research Part Ii-Topical Studies in Oceanography, 49(4-5): 921-933.
    Mizugaki, S., Nakamura, F., Araya, T., 2006. Using dendrogeomorphology and Cs-137 and Pb-210 radiochronology to estimate recent changes in sedimentation rates in Kushiro Mire, Northern Japan, resulting from land use change and river channelization. Catena, 68(1): 25-40.
    Moore, W.S., 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry, 65(1-2): 111-125.
    Moore, W.S., Reid, D.F., 1973. Extraction of radium from natual-waters using manganese-impregnated acrylic fibers. Journal of Geophysical Research, 78(36): 8880-8886.
    Ollivier, P., Claude, C., Radakovitch, O., Hamelin, B., 2008. TIMS measurements of Ra-226 and Ra-228 in the Gulf of Lion, an attempt to quantify submarine groundwater discharge. Marine Chemistry, 109(3-4): 337-354.
    Porcelli, D., Andersson, P.S., Baskaran, M., Wasserburg, G.J., 2001. Transport of U- and Th-series nuclides in a Baltic Shield watershed and the Baltic Sea. Geochimica Et Cosmochimica Acta, 65(15): 2439-2459.
    Rosholt, J.N., Doe, B.R., Tatsumot.M, 1966. Evolution of isotopic composition of uranium and thorium in soil profiles. Geological Society of America Bulletin, 77(9): 987-&.
    Ruiz-Fernandez, A.C., Hillaire-Marcel, C., 2009. Pb-210-derived ages for the reconstruction of terrestrial contaminant history into the Mexican Pacific coast: Potential and limitations. Marine Pollution Bulletin, 59(4-7, Sp. Iss. SI): 134-145.
    Schottler, S.P., Engstrom, D.R., 2006. A chronological assessment of Lake Okeechobee (Florida) sediments using multiple dating markers. Journal of Paleolimnology, 36(1): 19-36.
    Vigier, N., Bourdon, B., Turner, S., Allegre, C.J., 2001. Erosion timescales derived from U-decay series measurements in rivers. Earth and Planetary Science Letters, 193(3-4): 549-563.
    Zhai, W.D., Dai, M.H., Cai, W.J., Wang, Y.C., Wang, Z.H., 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry, 93(1): 21-32.

    下載圖示 校內:2012-07-29公開
    校外:2015-07-29公開
    QR CODE