| 研究生: |
阮停遵 Nguyen, Dinh-Tuan |
|---|---|
| 論文名稱: |
具可擴展性的2D材料合成法 Scalable Synthesis of 2D Materials |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 共同指導教授: |
謝馬利歐
Mario, Hofmann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | graphene 、2D materials synthesis 、transition metal dichalcogenide 、CVD 、liquid-liquid interface |
| 外文關鍵詞: | graphene, 2D materials synthesis, transition metal dichalcogenide, CVD, liquid-liquid interface |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2D materials have been at the forefront of the materials science in the last two decades, exhibiting extraordinary properties that can be game-changing in various areas of application. However, their adoption by industrial players have been slow, due to the lack of suitable synthesis techniques that can produce these materials in large quantity and high quality at competitive costs. This thesis describes efforts to improve several aspects of 2D materials synthesis with novel technical setups. For chemical vapor deposition – the leading method of 2D film fabrication, a solid diffusion-based pretreatment method is found to efficiently remove substrate impurities, leading to improved graphene film quality. Meanwhile, the introduction of additives into the process of high shear exfoliation substantially increases the yield of nanoflake production for non-graphene 2D materials. Finally, a new assembly technique involving dynamic liquid-liquid interface is invented to produce extremely strong membranes of 2D nanoflakes. Together, these studies represent a significant step towards mass production of 2D materials and unlocking their potentials.
1. Yang, X.; Yu, X.; Liu, X. Obtaining a sustainable competitive advantage from patent information: A patent analysis of the graphene industry. Sustainability 2018, 10, 4800.
2. Boehm, H.P.; Clauss, A.; Fischer, G.O.; Hofmann, U. Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien. Zeitschrift für anorganische und allgemeine Chemie 1962, 316, 119-127, doi:10.1002/zaac.19623160303.
3. Van Bommel, A.J.; Crombeen, J.E.; Van Tooren, A. LEED and Auger electron observations of the SiC(0001) surface. Surface Science 1975, 48, 463-472, doi:https://doi.org/10.1016/0039-6028(75)90419-7.
4. Blakely, J.M.; Kim, J.S.; Potter, H.C. Segregation of Carbon to the (100) Surface of Nickel. Journal of Applied Physics 1970, 41, 2693-2697, doi:10.1063/1.1659283.
5. Geim, A. Graphene prehistory. Physica Scripta 2012, 2012, 014003.
6. Feynman, R.P. There's plenty of room at the bottom. California Institute of Technology, Engineering and Science magazine 1960.
7. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface studies by scanning tunneling microscopy. Physical review letters 1982, 49, 57.
8. Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Physical Review Letters 1986, 56, 930-933, doi:10.1103/PhysRevLett.56.930.
9. Drexler, K.E. Engines of creation; Anchor: 1986.
10. Boehm, H.P.; Setton, R.; Stumpp, E. Nomenclature and terminology of graphite intercalation compounds. Carbon 1986, 24, 241-245, doi:https://doi.org/10.1016/0008-6223(86)90126-0.
11. Terai, M.; Hasegawa, N.; Okusawa, M.; Otani, S.; Oshima, C. Electronic states of monolayer micrographite on TiC(111)-faceted and TiC(410) surfaces. Applied Surface Science 1998, 130-132, 876-882, doi:https://doi.org/10.1016/S0169-4332(98)00169-X.
12. Lu, X.; Yu, M.; Huang, H.; Ruoff, R.S. Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999, 10, 269.
13. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666, doi:10.1126/science.1102896.
14. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385, doi:10.1126/science.1157996.
15. Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204, doi:10.1038/nature04235.
16. Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308, doi:10.1126/science.1156965.
17. Larousserie, D. Graphene - the new wonder material. The Guardian 2013.
18. Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 10451, doi:10.1073/pnas.0502848102.
19. Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews 2018, 118, 6236-6296, doi:10.1021/acs.chemrev.7b00633.
20. Spasenovic, M. Graphene Market Review. In Graphene Technology, S. Nazarpour, S.R.W., Ed. 2016; 10.1002/9783527687541.ch7pp. 177-187.
21. Wang, X.-Y.; Narita, A.; Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry 2017, 2, 0100, doi:10.1038/s41570-017-0100.
22. Benedict, L.X.; Chopra, N.G.; Cohen, M.L.; Zettl, A.; Louie, S.G.; Crespi, V.H. Microscopic determination of the interlayer binding energy in graphite. Chemical Physics Letters 1998, 286, 490-496, doi:https://doi.org/10.1016/S0009-2614(97)01466-8.
23. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669, doi:10.1126/science.1102896.
24. Zhao, W.; Fang, M.; Wu, F.; Wu, H.; Wang, L.; Chen, G. Preparation of graphene by exfoliation of graphite using wet ball milling. Journal of Materials Chemistry 2010, 20, 5817-5819, doi:10.1039/C0JM01354D.
25. Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P., et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials 2014, 13, 624-630, doi:10.1038/nmat3944.
26. Karagiannidis, P.G.; Hodge, S.A.; Lombardi, L.; Tomarchio, F.; Decorde, N.; Milana, S.; Goykhman, I.; Su, Y.; Mesite, S.V.; Johnstone, D.N., et al. Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. ACS Nano 2017, 11, 2742-2755, doi:10.1021/acsnano.6b07735.
27. Khan, U.; Porwal, H.; O’Neill, A.; Nawaz, K.; May, P.; Coleman, J.N. Solvent-Exfoliated Graphene at Extremely High Concentration. Langmuir 2011, 27, 9077-9082, doi:10.1021/la201797h.
28. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun'Ko, Y.K., et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008, 3, 563-568, doi:10.1038/nnano.2008.215.
29. Backes, C.; Higgins, T.M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J.N. Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials 2017, 29, 243-255, doi:10.1021/acs.chemmater.6b03335.
30. Harvey, A.; Backes, C.; Gholamvand, Z.; Hanlon, D.; McAteer, D.; Nerl, H.C.; McGuire, E.; Seral-Ascaso, A.; Ramasse, Q.M.; McEvoy, N., et al. Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials 2015, 27, 3483-3493, doi:10.1021/acs.chemmater.5b00910.
31. Varrla, E.; Paton, K.R.; Backes, C.; Harvey, A.; Smith, R.J.; McCauley, J.; Coleman, J.N. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 2014, 6, 11810-11819, doi:10.1039/C4NR03560G.
32. Suslick, K.S.; Flannigan, D.J. Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation. Annual Review of Physical Chemistry 2008, 59, 659-683, doi:10.1146/annurev.physchem.59.032607.093739.
33. Bracamonte, M.V.; Lacconi, G.I.; Urreta, S.E.; Foa Torres, L.E.F. On the Nature of Defects in Liquid-Phase Exfoliated Graphene. The Journal of Physical Chemistry C 2014, 118, 15455-15459, doi:10.1021/jp501930a.
34. Hofmann, M.; Chiang, W.-Y.; Nguyen, D.-T.; Hsieh, Y.-P. Controlling the properties of graphene produced by electrochemical exfoliation. Nanotechnology 2015, 26, 335607.
35. Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229-1232, doi:10.1126/science.1150878.
36. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565, doi:https://doi.org/10.1016/j.carbon.2007.02.034.
37. Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829, doi:10.1038/39827.
38. Mitzi, D.B.; Kosbar, L.L.; Murray, C.E.; Copel, M.; Afzali, A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 2004, 428, 299-303, doi:10.1038/nature02389.
39. Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A Chemical Route to Graphene for Device Applications. Nano Letters 2007, 7, 3394-3398, doi:10.1021/nl0717715.
40. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotechnology 2008, 3, 538-542, doi:10.1038/nnano.2008.210.
41. Wang, J.; Teng, C.; Jiang, Y.; Zhu, Y.; Jiang, L. Wetting-Induced Climbing for Transferring Interfacially Assembled Large-Area Ultrathin Pristine Graphene Film. Advanced Materials 2019, 31, 1806742, doi:10.1002/adma.201806742.
42. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A.C. Production and processing of graphene and 2d crystals. Materials Today 2012, 15, 564-589, doi:https://doi.org/10.1016/S1369-7021(13)70014-2.
43. Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X., et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473, doi:10.1038/nature09211.
44. Narita, A.; Feng, X.; Hernandez, Y.; Jensen, S.A.; Bonn, M.; Yang, H.; Verzhbitskiy, I.A.; Casiraghi, C.; Hansen, M.R.; Koch, A.H.R., et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 2014, 6, 126-132, doi:10.1038/nchem.1819.
45. Turchanin, A.; Beyer, A.; Nottbohm, C.T.; Zhang, X.; Stosch, R.; Sologubenko, A.; Mayer, J.; Hinze, P.; Weimann, T.; Gölzhäuser, A. One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness. Advanced Materials 2009, 21, 1233-1237, doi:10.1002/adma.200803078.
46. An, X.; Liu, F.; Jung, Y.J.; Kar, S. Large-Area Synthesis of Graphene on Palladium and Their Raman Spectroscopy. The Journal of Physical Chemistry C 2012, 116, 16412-16420, doi:10.1021/jp301196u.
47. Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S.H.; Song, Y.I.; Hong, B.H.; Ahn, J.-H. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters 2010, 10, 490-493, doi:10.1021/nl903272n.
48. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312, doi:10.1126/science.1171245.
49. Ruan, G.; Sun, Z.; Peng, Z.; Tour, J.M. Growth of graphene from food, insects, and waste. ACS nano 2011, 5, 7601-7607.
50. Nguyen, D.T., Hsieh, Y.‐P. and Hofmann, M. Graphene—Synthesis and Quality Optimization. In Handbook of Graphene, E. Celasco, A.N.C., T. Stauber, M. Zhang, C. Ozkan, C. Ozkan, U. Ozkan, B. Palys, S.W. Harun, Ed. 2019; 10.1002/9781119468455.ch2pp. 41-62.
51. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat Mater 2007, 6, 183-191.
52. Zhu, D.; Shu, H.; Jiang, F.; Lv, D.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Materials and Applications 2017, 1, 8, doi:10.1038/s41699-017-0010-x.
53. Kim, H.; Saiz, E.; Chhowalla, M.; Mattevi, C. Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New Journal of Physics 2013, 15, 053012, doi:10.1088/1367-2630/15/5/053012.
54. Song, H.S.; Li, S.L.; Miyazaki, H.; Sato, S.; Hayashi, K.; Yamada, A.; Yokoyama, N.; Tsukagoshi, K. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Scientific Reports 2012, 2, 337, doi:10.1038/srep00337.
55. Hwangbo, Y.; Lee, C.-K.; Kim, S.-M.; Kim, J.-H.; Kim, K.-S.; Jang, B.; Lee, H.-J.; Lee, S.-K.; Kim, S.-S.; Ahn, J.-H., et al. Fracture Characteristics of Monolayer CVD-Graphene. Scientific Reports 2014, 4, 4439, doi:10.1038/srep04439.
56. Wang, H.; Wang, G.; Bao, P.; Yang, S.; Zhu, W.; Xie, X.; Zhang, W.-J. Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. Journal of the American Chemical Society 2012, 134, 3627-3630, doi:10.1021/ja2105976.
57. Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics 2011, 60, 413-550, doi:10.1080/00018732.2011.582251.
58. Salman, F.; Arnold, J.; Zhang, P.; Chai, G.G.; Stevie, F.A.; Chow, L. Redistribution of implanted species in polycrystalline silicon films on silicon substrate. In Proceedings of Defect and Diffusion Forum; pp. 7-12.
59. Martinuzzi, S.; Perichaud, I.; Simon, J.J. External gettering by aluminum–silicon alloying observed from carrier recombination at dislocations in float zone silicon wafers. Applied Physics Letters 1997, 70, 2744-2746, doi:10.1063/1.119009.
60. Périchaud, I. Gettering of impurities in solar silicon. Solar Energy Materials and Solar Cells 2002, 72, 315-326, doi:https://doi.org/10.1016/S0927-0248(01)00179-9.
61. Goreslavets, N.N.; Rodin, A.O. Diffusion formation of intermediate phases and supersaturated solid solutions in the aluminum−copper system. Physics of Metals and Metallography 2017, 118, 1120-1126, doi:10.1134/S0031918X17100064.
62. Murdock, A.T.; van Engers, C.D.; Britton, J.; Babenko, V.; Meysami, S.S.; Bishop, H.; Crossley, A.; Koos, A.A.; Grobert, N. Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon 2017, 122, 207-216, doi:https://doi.org/10.1016/j.carbon.2017.06.075.
63. Hsieh, Y.-P.; Hofmann, M.; Kong, J. Promoter-assisted chemical vapor deposition of graphene. Carbon 2014, 67, 417-423, doi:http://dx.doi.org/10.1016/j.carbon.2013.10.013.
64. Hsieh, Y.-P.; Chiu, Y.-J.; Hofmann, M. Enhancing CVD graphene's inter-grain connectivity by a graphite promoter. Nanoscale 2015, 7, 19403-19407, doi:10.1039/C5NR05972K.
65. Chin, H.T.; Shih, C.H.; Hsieh, Y.P.; Ting, C.C.; Aoh, J.N.; Hofmann, M. How does graphene grow on complex 3D morphologies? Physical Chemistry Chemical Physics 2017, 19, 23357-23361, doi:10.1039/C7CP03207B.
66. Chen, S.; Ji, H.; Chou, H.; Li, Q.; Li, H.; Suk, J.W.; Piner, R.; Liao, L.; Cai, W.; Ruoff, R.S. Millimeter-Size Single-Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition. Advanced Materials 2013, 25, 2062-2065, doi:https://doi.org/10.1002/adma.201204000.
67. Li, X.; Cai, W.; Colombo, L.; Ruoff, R.S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters 2009, 9, 4268-4272, doi:10.1021/nl902515k.
68. Obinata, I.; Komatsu, N. Solubility of carbon in liquid aluminium. Journal of Japan Institute of Light Metals 1964, 14, 226-230.
69. Luo, Z.; Lu, Y.; Singer, D.W.; Berck, M.E.; Somers, L.A.; Goldsmith, B.R.; Johnson, A.T.C. Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure. Chemistry of Materials 2011, 23, 1441-1447, doi:10.1021/cm1028854.
70. Park, J.; An, H.; Choi, D.-C.; Hussain, S.; Song, W.; An, K.-S.; Lee, W.-J.; Lee, N.; Lee, W.-G.; Jung, J. Selective growth of graphene in layer-by-layer via chemical vapor deposition. Nanoscale 2016, 8, 14633-14642, doi:10.1039/C6NR04306B.
71. Hofmann, M.; Shin, Y.C.; Hsieh, Y.-P.; Dresselhaus, M.S.; Kong, J. A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition. Nano Research 2012, 5, 504-511, doi:10.1007/s12274-012-0227-0.
72. Ryu, J.; Kim, Y.; Won, D.; Kim, N.; Park, J.S.; Lee, E.-K.; Cho, D.; Cho, S.-P.; Kim, S.J.; Ryu, G.H., et al. Fast Synthesis of High-Performance Graphene Films by Hydrogen-Free Rapid Thermal Chemical Vapor Deposition. ACS Nano 2014, 8, 950-956, doi:10.1021/nn405754d.
73. Zhang, X.; Hsu, A.; Wang, H.; Song, Y.; Kong, J.; Dresselhaus, M.S.; Palacios, T. Impact of Chlorine Functionalization on High-Mobility Chemical Vapor Deposition Grown Graphene. ACS Nano 2013, 7, 7262-7270, doi:10.1021/nn4026756.
74. Li, Z.; Young, R.J.; Backes, C.; Zhao, W.; Zhang, X.; Zhukov, A.; Tillotson, E.; Conlan, A.P.; Ding, F.; Haigh, S.J., et al. Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano 2020, 10.1021/acsnano.0c03916, doi:10.1021/acsnano.0c03916.
75. Varrla, E.; Backes, C.; Paton, K.R.; Harvey, A.; Gholamvand, Z.; McCauley, J.; Coleman, J.N. Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation. Chemistry of Materials 2015, 27, 1129-1139, doi:10.1021/cm5044864.
76. Parviz, D.; Irin, F.; Shah, S.A.; Das, S.; Sweeney, C.B.; Green, M.J. Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene. Advanced Materials 2016, 28, 8796-8818, doi:https://doi.org/10.1002/adma.201601889.
77. Tubon Usca, G.; Vacacela Gomez, C.; Guevara, M.; Tene, T.; Hernandez, J.; Molina, R.; Tavolaro, A.; Miriello, D.; Caputi, L.S. Zeolite-Assisted Shear Exfoliation of Graphite into Few-Layer Graphene. Crystals 2019, 9, 377.
78. Fang, X.-Y.; Yu, X.-X.; Zheng, H.-M.; Jin, H.-B.; Wang, L.; Cao, M.-S. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Physics Letters A 2015, 379, 2245-2251, doi:https://doi.org/10.1016/j.physleta.2015.06.063.
79. Jang, W.; Chen, Z.; Bao, W.; Lau, C.N.; Dames, C. Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite. Nano Letters 2010, 10, 3909-3913, doi:10.1021/nl101613u.
80. Xu, D.; Xu, P.; Zhu, Y.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Mallouk, T.E.; Fan, X. High Yield Exfoliation of WS2 Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS2/CdS Nanorod Composites. ACS Applied Materials & Interfaces 2018, 10, 2810-2818, doi:10.1021/acsami.7b15614.
81. Adilbekova, B.; Lin, Y.; Yengel, E.; Faber, H.; Harrison, G.; Firdaus, Y.; El-Labban, A.; Anjum, D.H.; Tung, V.; Anthopoulos, T.D. Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells. Journal of Materials Chemistry C 2020, 8, 5259-5264, doi:10.1039/D0TC00659A.
82. Han, C.; Zhang, Y.; Gao, P.; Chen, S.; Liu, X.; Mi, Y.; Zhang, J.; Ma, Y.; Jiang, W.; Chang, J. High-Yield Production of MoS2 and WS2 Quantum Sheets from Their Bulk Materials. Nano Letters 2017, 17, 7767-7772, doi:10.1021/acs.nanolett.7b03968.
83. Ma, L.; Liu, Z.; Cheng, Z.-L. Scalable exfoliation and friction performance of few-layered WS2 nanosheets by microwave-assisted liquid-phase sonication. Ceramics International 2020, 46, 3786-3792, doi:https://doi.org/10.1016/j.ceramint.2019.10.101.
84. Backes, C.; Szydłowska, B.M.; Harvey, A.; Yuan, S.; Vega-Mayoral, V.; Davies, B.R.; Zhao, P.-l.; Hanlon, D.; Santos, E.J.G.; Katsnelson, M.I., et al. Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano 2016, 10, 1589-1601, doi:10.1021/acsnano.5b07228.
85. Lieber, C.A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Applied Spectroscopy 2003, 57, 1363-1367, doi:10.1366/000370203322554518.
86. Devos, O.; Mouton, N.; Sliwa, M.; Ruckebusch, C. Baseline correction methods to deal with artifacts in femtosecond transient absorption spectroscopy. Analytica Chimica Acta 2011, 705, 64-71, doi:https://doi.org/10.1016/j.aca.2011.04.013.
87. Liu, L.; Shen, Z.; Yi, M.; Zhang, X.; Ma, S. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Advances 2014, 4, 36464-36470, doi:10.1039/C4RA05635C.
88. Biccai, S.; Barwich, S.; Boland, D.; Harvey, A.; Hanlon, D.; McEvoy, N.; Coleman, J.N. Exfoliation of 2D materials by high shear mixing. 2D Materials 2018, 6, 015008, doi:10.1088/2053-1583/aae7e3.
89. Thripuranthaka, M.; Kashid, R.V.; Sekhar Rout, C.; Late, D.J. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Applied Physics Letters 2014, 104, 081911, doi:10.1063/1.4866782.
90. Koenig, J.L.; Boerio, F.J. Raman Scattering and Band Assignments in Polytetrafluoroethylene. The Journal of Chemical Physics 1969, 50, 2823-2829, doi:10.1063/1.1671470.
91. Schmälzlin, E.; Moralejo, B.; Rutowska, M.; Monreal-Ibero, A.; Sandin, C.; Tarcea, N.; Popp, J.; Roth, M.M. Raman Imaging with a Fiber-Coupled Multichannel Spectrograph. Sensors 2014, 14, 21968-21980.
92. Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Piao, J.; Yao, T.; Wu, C.; Hu, S.; Wei, S., et al. Fabrication of flexible and freestanding zinc chalcogenide single layers. Nature Communications 2012, 3, 1057, doi:10.1038/ncomms2066.
93. Xu, Y.; Zhao, W.; Xu, R.; Shi, Y.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chemical Communications 2013, 49, 9803-9805, doi:10.1039/C3CC46342G.
94. Jung, J.H.; Park, C.-H.; Ihm, J. A Rigorous Method of Calculating Exfoliation Energies from First Principles. Nano Letters 2018, 18, 2759-2765, doi:10.1021/acs.nanolett.7b04201.
95. Ji, L.-J.; Qin, Y.; Gui, D.; Li, W.; Li, Y.; Li, X.; Lu, P. Quantifying the Exfoliation Ease Level of 2D Materials via Mechanical Anisotropy. Chemistry of Materials 2018, 30, 8732-8738, doi:10.1021/acs.chemmater.8b01082.
96. Backes, C.; Campi, D.; Szydlowska, B.M.; Synnatschke, K.; Ojala, E.; Rashvand, F.; Harvey, A.; Griffin, A.; Sofer, Z.; Marzari, N., et al. Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS Nano 2019, 13, 7050-7061, doi:10.1021/acsnano.9b02234.
97. Liu, X.; Metcalf, T.H.; Robinson, J.T.; Houston, B.H.; Scarpa, F. Shear Modulus of Monolayer Graphene Prepared by Chemical Vapor Deposition. Nano Letters 2012, 12, 1013-1017, doi:10.1021/nl204196v.
98. Blank, V.D.; Buga, S.G.; Serebryanaya, N.R.; Denisov, V.N.; Dubitsky, G.A.; Ivlev, A.N.; Mavrin, B.N.; Popov, M.Y. Ultrahard and superhard carbon phases produced from C60 by heating at high pressure: structural and Raman studies. Physics Letters A 1995, 205, 208-216, doi:https://doi.org/10.1016/0375-9601(95)00564-J.
99. Léger, J.M.; Haines, J.; Davydov, V.A.; Agafonov, V. Irreversible amorphization of tetragonal two-dimensional polymeric C60 under high pressure. Solid State Communications 2002, 121, 241-244, doi:https://doi.org/10.1016/S0038-1098(01)00503-8.
100. Talyzin, A.V.; Dubrovinsky, L.S. In situ Raman study of path-dependent C60 polymerization: Isothermal compression up to 32 GPa at 800 K. Physical Review B 2003, 68, 233207, doi:10.1103/PhysRevB.68.233207.
101. Woltornist, S.J.; Oyer, A.J.; Carrillo, J.-M.Y.; Dobrynin, A.V.; Adamson, D.H. Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping. ACS Nano 2013, 7, 7062-7066, doi:10.1021/nn402371c.
102. Huh, C.; Scriven, L.E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science 1971, 35, 85-101, doi:https://doi.org/10.1016/0021-9797(71)90188-3.
103. Iles, S.; Nelson, J. Sub-angstrom surface roughness metrology with the white light interferometer. In Proceedings of Optifab 2019; p. 1117519.
104. van Duin, A.C.T.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A Reactive Force Field for Hydrocarbons. The Journal of Physical Chemistry A 2001, 105, 9396-9409, doi:10.1021/jp004368u.
105. Backes, C.; Paton, K.R.; Hanlon, D.; Yuan, S.; Katsnelson, M.I.; Houston, J.; Smith, R.J.; McCloskey, D.; Donegan, J.F.; Coleman, J.N. Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets. Nanoscale 2016, 8, 4311-4323, doi:10.1039/C5NR08047A.
106. Lin, Y.; Skaff, H.; Böker, A.; Dinsmore, A.D.; Emrick, T.; Russell, T.P. Ultrathin Cross-Linked Nanoparticle Membranes. Journal of the American Chemical Society 2003, 125, 12690-12691, doi:10.1021/ja036919a.
107. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 2008, 321, 385-388.
108. Vlassak, J.; Nix, W. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. Journal of materials research 1992, 7, 3242-3249.
109. Yong, X.; Tsui, T.Y.; Vlassak, J.J.; McKerrow, A.J. Measuring the elastic modulus and ultimate strength of low-k dielectric materials by means of the bulge test. In Proceedings of Proceedings of the IEEE 2004 International Interconnect Technology Conference (IEEE Cat. No.04TH8729), 9-9 June 2004; pp. 133-135.
110. Zhang, T.; Li, X.; Gao, H. Fracture of graphene: a review. IJFr 2015, 196, 1-31, doi:10.1007/s10704-015-0039-9.
111. Ruiz-Vargas, C.S.; Zhuang, H.L.; Huang, P.Y.; van der Zande, A.M.; Garg, S.; McEuen, P.L.; Muller, D.A.; Hennig, R.G.; Park, J. Softened Elastic Response and Unzipping in Chemical Vapor Deposition Graphene Membranes. Nano Letters 2011, 11, 2259-2263, doi:10.1021/nl200429f.
112. Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science 2017, 90, 75-127, doi:https://doi.org/10.1016/j.pmatsci.2017.07.004.
113. Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change 2019, 9, 374-378, doi:10.1038/s41558-019-0459-z.
114. Wang, W.; Dai, S.; Li, X.; Yang, J.; Srolovitz, D.J.; Zheng, Q. Measurement of the cleavage energy of graphite. Nature Communications 2015, 6, 7853, doi:10.1038/ncomms8853.
115. Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Systematic Investigation of the Intrinsic Channel Properties and Contact Resistance of Monolayer and Multilayer Graphene Field-Effect Transistor. Japanese Journal of Applied Physics 2010, 49, 051304.
116. Chen, D.-R.; Hofmann, M.; Yao, H.-M.; Chiu, S.-K.; Chen, S.-H.; Luo, Y.-R.; Hsu, C.-C.; Hsieh, Y.-P. Lateral Two-Dimensional Material Heterojunction Photodetectors with Ultrahigh Speed and Detectivity. ACS Applied Materials & Interfaces 2019, 11, 6384-6388, doi:10.1021/acsami.8b19093.
117. Wang, H.; Liu, F.; Fu, W.; Fang, Z.; Zhou, W.; Liu, Z. Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale 2014, 6, 12250-12272, doi:10.1039/C4NR03435J.
118. Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439, doi:10.1126/science.aac9439.
119. Furchi, M.M.; Höller, F.; Dobusch, L.; Polyushkin, D.K.; Schuler, S.; Mueller, T. Device physics of van der Waals heterojunction solar cells. npj 2D Materials and Applications 2018, 2, 3, doi:10.1038/s41699-018-0049-3.
120. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nature Energy 2017, 2, 17089, doi:10.1038/nenergy.2017.89.
121. Shen, J.; He, Y.; Wu, J.; Gao, C.; Keyshar, K.; Zhang, X.; Yang, Y.; Ye, M.; Vajtai, R.; Lou, J., et al. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters 2015, 15, 5449-5454, doi:10.1021/acs.nanolett.5b01842.
122. Smallwood, I.M. n-Methyl-2-pyrrolidone. In Handbook of Organic Solvent Properties, Smallwood, I.M., Ed. Butterworth-Heinemann: Oxford, 1996; https://doi.org/10.1016/B978-0-08-052378-1.50049-9pp. 187-189.
123. Liu, W.W.; Wang, J.N.; Wang, X.X. Charging of unfunctionalized graphene in organic solvents. Nanoscale 2012, 4, 425-428, doi:10.1039/C1NR10921A.
124. Gupta, P.; Dongare, P.D.; Grover, S.; Dubey, S.; Mamgain, H.; Bhattacharya, A.; Deshmukh, M.M. A facile process for soak-and-peel delamination of CVD graphene from substrates using water. Scientific Reports 2014, 4, 3882, doi:10.1038/srep03882.
校內:2026-08-27公開