簡易檢索 / 詳目顯示

研究生: 徐華鍵
Hsu, Hua-Jian
論文名稱: 雙頻段階梯式表面聲波濾波器應用於雙工器的研究
Investigation of Dual Band Ladder Type Surface Acoustic Wave Filter for Duplexer Applications
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: ADS模擬軟體階梯式表面聲波濾波器雙工器
外文關鍵詞: ADS simulation, ladder type SAW, duplexer
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出表面聲波諧振器、階梯式表面聲波濾波器和雙工器的模擬方法。透過文中的模擬方法所設計的雙工器,與傳統的電路相比有以下幾點優勢:(一)於通帶中較低的插入損號,(二)於截止頻帶上更大的下降斜率、(三)於拒帶上較高的插入損號。由於階梯式表面聲波濾波器與多指濾波器和雙模態濾波器相比,有最低的插入損耗、最大的頻寬和最高的功率耐受度,故本論文中的雙工器是由兩個階梯式表面聲波濾波器所組成,以達到更佳的特性。階梯式濾波器是基於一個串聯諧振器和一個並聯接地的諧振器電路,經過多階的串聯後所構成。此篇論文的諧振器模擬是透過集總元件的電路模型在ADS模擬軟體中進行驗證,並針對指叉狀電極對數和重疊長度的變化進行討論。
    透過與傳統雙工器電路的比較,本文提出一組最佳的參數模擬結果,設定壓電基板為48°YX-LiTaO3。其中Tx的操作頻率為824-849(MHz),Rx的操作頻率為869-894(MHz),於Tx端最低的插入損耗為0.47(dB),Rx端最低的插入損耗為1.02(dB),Tx和Rx之間的隔離度來到40(dB)以下。故透過正確的模擬,能快速且精確的得到濾波器和雙工器電路特性,並能節省實際製造下線的成本,提出更佳的電路設計參數。

    In the paper, the circuit simulation methods of surface acoustic wave (SAW) resonator, ladder type SAW filter and SAW duplexer are proposed. The designed duplexer exhibits lower insertion loss in pass band, sharper cut-off frequency and higher insertion loss in rejection band than the conventional circuit. The duplexer consists of two ladder type SAW filters and each ladder type SAW filter is composed of a series resonator and a parallel resonator. The simulation of SAW resonator through ADS (Advanced Design System) is performed with the lumped elements. The performance of the duplexer has dual pass band. The first pass band which applies on Tx is from 824(MHz) to 849(MHz) and the second pass band applying on Rx is from 869(MHz) to 894(MHz). Through the measurement experiment of the duplexer IC performance, we compared the measurement result with simulation result to tune out the best parameters of duplexer circuit in the simulation. The ladder type SAW filters have the lowest insertion loss, the largest band width, and the best power durability comparing with the IIDT (Interdigitated Interdigital Transducer) and DMS (Double Mode SAW). The minimum insertion loss is 0.47(dB) in the first pass band and 1.02(dB) in the second pass band. The isolation performance of the best simulation result between Tx and Rx is less than 40(dB) from 750(MHz) to 950(MHz). Through the precise simulation, the appropriate SAW band pass filter and duplexer will be designed in a simple way.

    摘要. I Abstract II 致謝. V 目錄. VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1前言 1 1-2表面聲波元件的介紹 2 1-2-1 共振元件 3 1-2-2 濾波元件 4 1-3研究動機 7 第二章 理論基礎 9 2-1 表面聲波介紹 9 2-1-1指叉狀電極介紹 12 2-1-2 壓電基板介紹 14 2-2 壓電理論 17 2-2-1 正壓電效應 18 2-2-2 逆壓電效應 19 2-2-3 壓電效應數學表示式 20 2-2-4 晶格與晶系介紹 26 2-3 模擬理論介紹 27 2-3-1 Mason等效電路 27 2-3-2 Coupling of mode (COM)理論 30 第三章 模擬方法與實驗介紹 32 3-1 單埠表面聲波諧振器模擬 32 3-1-1 單埠表面聲波諧振器原理架構 32 3-1-2 單埠表面聲波諧振器之等效電路 33 3-1-3 單埠表面聲波諧振器之模擬流程 36 3-2 階梯式表面聲波濾波器模擬 38 3-2-1 階梯式表面聲波濾波器原理架構 38 3-2-2 階梯式表面聲波濾波器模擬流程 40 3-3 階梯式表面聲波濾波器應用於雙工器的模擬 42 3-4實驗介紹 45 3-4-1 量測儀器介紹 45 3-4-2 SOLT校正方法介紹 46 3-4-3 雙工器晶片介紹 48 3-4-4 測試板介紹 49 第四章 結果與討論 52 4-1 前言 52 4-2 雙工器晶片特性之量測 53 4-2-1 鎊線寄生效應討論 53 4-2-2晶片量測結果 58 4-3 對數(Np)與重疊長度(W)的調變 60 4-4 傳輸端(Tx)階梯式表面聲波濾波器之模擬結果 63 4-4-1 Tx端單埠表面聲波諧振器模擬 63 4-4-2 Tx端階梯式表面聲波濾波器模擬 67 4-5 接收端(Rx)階梯式表面聲波濾波器之模擬結果 70 4-5-1 Rx端單埠表面聲波諧振器模擬 70 4-5-2 Rx端階梯式表面聲波濾波器模擬 74 4-6 雙工器之模擬 77 4-7 實際量測與模擬比較 79 第五章 結論 81 第六章 未來展望 83 參考文獻 84   表目錄 表1.1表面聲波元件的應用領域和項目 2 表1.2表面聲波濾波器比較表 6 表2.1常用壓電基板材料和其對應之物理參數 16 表2.2晶系分類表格 26 表3.1集總元件模型值 34 表3.2集總電路模型值(物理參數) 35 表3.3集總電路模型值(串並聯諧振頻率位移) 36 表3.4雙工器晶片特性表 48 表4.1重疊長度調變參數表 60 表4.2對數調變參數表 62 表4.3 Tx串聯諧振器參數表 63 表4.4 Tx並聯諧振器參數表 65 表4.5 Tx階梯式表面聲波濾波器電路參數表 68 表4.6 Tx階梯式表面聲波濾波器電路模型數值表 69 表4.7 Rx串聯諧振器參數表 70 表4.8 Rx並聯諧振器參數表 72 表4.9 Rx階梯式表面聲波濾波器電路參數表 75 表4.10 Rx階梯式表面聲波濾波器電路模型數值表 76   圖目錄 圖1.1a(One-Port)單埠共振元件示意圖 3 圖1.1b(Two-Port)雙埠共振元件示意圖 4 圖1.2 多指濾波器(IIDT)示意圖 5 圖1.3 雙模濾波器(DMS)示意圖 5 圖1.4 多階濾波器(Ladder type SAW)示意圖 6 圖1.5 雙工器於射頻電路示意圖 8 圖2.1 地震波示意圖 10 圖2.2 Rayleigh wave示意圖 [8] 11 圖2.3 SH-SAW示意圖 [8] 11 圖2.4 指叉狀電極設計圖形 13 圖2.5 鐵電性、焦電性、壓電性與介電性的關係圖 17 圖2.6 正壓電效應示意圖 18 圖2.7 逆壓電效應示意圖 19 圖2.8 壓電方程式關係示意圖 21 圖2.9 壓電材料方向表示法 22 圖2.10指狀電極之等效三埠網路 28 圖2.11 Mason等效電路圖 29 圖2.12 COM理論示意圖 31 圖3.1 單埠表面聲波諧振器 32 圖3.2 頻率參數之表面聲波諧振器-集總電路模型 33 圖3.3 物理參數之表面聲波諧振器-集總電路模型 34 圖3.4 單埠表面聲波諧振器模擬流程圖 37 圖3.5 單階階梯式濾波器電路示意圖 39 圖3.6 單階階梯式濾波器單元電路特性圖 40 圖3.7 階梯式表面聲波濾波器模擬流程圖 41 圖3.8 雙工器模擬流程圖 43 圖3.9 雙工器電路示意圖 44 圖3.1 量測機台(PNA) 45 圖3.11 SOLT校正器介紹 47 圖3.12測試板Layout圖 50 圖3.13 CPW饋入線電路 50 圖3.14 CPW饋入線電路模擬結果圖 51 圖4.1 CPW線段電路圖-控制組 54 圖4.2 鎊線電路圖-對照組 54 圖4.3 實際量測與模型之S21特性圖 56 圖4.4 實際量測與模型之S11特性圖 56 圖4.5 鎊線電路模型圖 57 圖4.6 對照組(a)、(b)之高頻特性圖 58 圖4.7 Tx-Ant與Ant-Rx量測結果圖 59 圖4.8 Tx-Rx隔離度量測結果圖 59 圖4.9 重疊長度調變單埠表面聲波諧振器模擬結果圖 61 圖4.10 對數調變單埠表面聲波諧振器模擬結果圖 62 圖4.11 Tx串聯諧振器電路圖 64 圖4.12 Tx串聯諧振器模擬結果圖 64 圖4.13 Tx並聯諧振器電路圖 65 圖4.14 Tx並聯諧振器模擬結果圖 66 圖4.15 Tx單階階梯式表面聲波濾波器電路圖 67 圖4.16 Tx單階階梯式表面聲波濾波器模擬結果圖 67 圖4.17 Tx階梯式表面聲波濾波器電路示意圖 68 圖4.18 Tx階梯式表面聲波濾波器模擬結果圖 69 圖4.19 Rx串聯諧振器電路圖 71 圖4.20 Rx串聯諧振器模擬結果圖 71 圖4.21 Rx並聯諧振器電路圖 72 圖4.22 Rx並聯諧振器模擬結果圖 73 圖4.23 Rx單階階梯式表面聲波濾波器電路圖 74 圖4.24 Rx單階階梯式表面聲波濾波器模擬結果圖 74 圖4.25 Rx階梯式表面聲波濾波器電路示意圖 75 圖4.26 Rx階梯式表面聲波濾波器模擬結果圖 76 圖4.27雙工器Tx-Ant與Ant-Rx模擬結果圖 77 圖4.28雙工器Tx-Rx模擬結果圖 78 圖4.29 Tx-Ant與Rx-Ant量測模擬比較圖 79 圖4.30 Tx-Rx量測模擬比較圖 80 圖5.1 Tx-Ant與Rx-Ant量測模擬比較圖 82 圖5.2 Tx-Rx量測模擬比較圖 82

    [1]簡俊謙 and 高曜煌, "表面聲波元件之設計及其在寬頻振盪器之應用," 交通大學電機工程學系學位論文, 1999.
    [2]A. Springer et al., "Design and performance of a SAW ladder-type filter at 3.15 GHz using SAW mass-production technology," IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 12, pp. 2312-2316, 1999.
    [3]廖昌盛 and 林聖迪, "高頻寬頻表面聲波濾波器之研究," 交通大學電機工程學系學位論文, 2007.
    [4]Y. Satoh, O. Ikata, T. Miyashita, and H. Ohmori, "RF SAW Filters," pp. 125-132.
    [5]O. Ikata, T. Nishihara, Y. Satoh, H. Fukushima, and N. Hirasawa, "A design of antenna duplexer using ladder type SAW filters," vol. 1, pp. 1-4: IEEE.
    [6]T. Fukuda, S. Matsumura, H. Hirano, and T. Ito, "Growth of LiTaO3 single crystal for SAW device applications," Journal of Crystal Growth, vol. 46, no. 2, pp. 179-184, 1979.
    [7]L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, vol. 1, no. 1, pp. 4-11, 1885.
    [8]K.-y. Hashimoto and K.-Y. Hashimoto, Surface acoustic wave devices in telecommunications. Springer, 2000.
    [9]鄒乙弘, "高機電耦合係數之鋰摻雜鈮酸鈉鉀壓電陶瓷開發及其在單一元件超音波換能器之應用," 成功大學電機工程學系學位論文, pp. 1-82, 2013.

    [10]高國陞, "表面聲波元件之頻率及溫度特性之研究," 國立中山大學電機工程學系博士班學位論文, 2004.
    [11]N. Naumenko and B. Abbot, "Optimized cut of LiTaO/sub 3/for resonator filters with improved performance," vol. 1, pp. 385-390: IEEE.
    [12]吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
    [13]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, and H. J. Shaw, "Analysis of interdigital surface wave transducers by use of an equivalent circuit model," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 11, pp. 856-864, 1969.
    [14]A. K. Namdeo and H. B. Nemade, "Extraction of Electrical Equivalent Circuit of One Port SAW Resonator Using FEM-based Simulation."
    [15]E. J. Staples, J. S. Schoenwald, R. C. Rosenfeld, and C. S. Hartmann, "UHF surface acoustic wave resonators," pp. 245-252: IEEE.
    [16]J. Tsutsumi et al., "Extremely low-loss SAW filter and its application to antenna duplexer for the 1.9 GHz PCS full-band," pp. 861-867: IEEE.
    [17]S. Inoue, J. Tsutsumi, T. Matsuda, M. Ueda, O. Ikata, and Y. Satoh, "Ultra-steep cut-off double mode SAW filter and its application to a PCS duplexer," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 9, 2007.
    [18]O. Ikata, T. Nishihara, Y. Satoh, H. Fukushima, and N. Hirasawa, "A design of antenna duplexer using ladder type SAW filters," vol. 1, pp. 1-4: IEEE.
    [19]莫清賢, "具降低輸出電壓漣波之單級返馳式功因修正電路," 國立中山大學電機工程學系碩士論文 , 2009
    [20]詹賀閔 and 吳霖堃, "背接金屬共平面波導之共振頻率電磁波輻射分析及改善," 交通大學電機工程學系學位論文, 2012.

    [21]L. Ying, H. ChunYue, and W. Wangang, "Modeling and characterization of the bonding-wire interconnection for microwave MCM," pp. 810-814: IEEE.
    [22]T. Takai et al., "IHP SAW technology and its application to microacoustic components," pp. 1-8: IEEE.
    [23]R. Weigel, K. Weigenthaler, R. Dill, and I. Schropp, "A 900 MHz ladder-type SAW filter duplexer," vol. 2, pp. 413-416: IEEE.
    [24]S. Mineyoshi, O. Kawachi, M. Ueda, Y. Fujiwara, H. Furusato, and O. Ikata, "Analysis and optimal SAW ladder filter design including bonding wire and package impedance," vol. 1, pp. 175-178: IEEE.
    [25]陳漢珍, "可積體化表面聲波帶拒濾波器之研製," 成功大學微電子工程研究所學位論文, pp. 1-86, 2002.
    [26]X. Lu, J. Galipeau, K. Mouthaan, E. H. Briot, and B. Abbott, "Reconfigurable multiband SAW filters for LTE applications," pp. 253-255: IEEE.
    [27]X. Lu, K. Mouthaan, and Y. T. Soon, "Wideband bandpass filters with SAW-filter-like selectivity using chip SAW resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 1, pp. 28-36, 2014.
    [28]S. Inoue et al., "1.9 GHz range ultra-low-loss and steep cut-off double mode SAW filter for the Rx band in the PCS antenna duplexer," vol. 1, pp. 389-392: IEEE.
    [29]J. Tsutsumi et al., "Extremely low-loss SAW filter and its application to antenna duplexer for the 1.9 GHz PCS full-band," pp. 861-867: IEEE.
    [30]H. Nakamura, S. Tsuzuki, T. Ishizaki, and T. Yamada, "A design technique of balanced longitudinal coupled mode SAW filters for RF-stage with a desired matching impedance," vol. 2, pp. 2097-2100: IEEE.

    [31]M. Hikita, N. Shibagaki, K. Sakiyama, and K. Hasegawa, "Design methodology and experimental results for new ladder-type SAW resonator coupled filters," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 42, no. 4, pp. 495-508, 1995.
    [32]S. T. Wang and M. Chung, "Simulation of Balanced Surface Acoustic Wave (SAW) Devices Incorporating a Modified Four-port Mason’s Equivalent Circuit Model," pp. 148-153: Citeseer.
    [33]Y. Roh, Y. Lee, and S. Lee, "Development of a new design technique for surface acoustic wave ladder filters," Japanese Journal of Applied Physics, vol. 40, no. 8R, p. 5173, 2001.
    [34]C. Fu, O. Elmazria, F. Sarry, T. Mahalingam, S. S. Yang, and K. Lee, "Development of wireless, batteryfree gyroscope based on one-port SAW delay line and double resonant antenna," Sensors and Actuators A: Physical, vol. 220, pp. 270-280, 2014.
    [35]陳盈樹, "低損耗梯型中頻表面聲波濾波器之研究," 成功大學電機工程學系學位論文, pp. 1-99, 2002.
    [36]林俊甫, "雙埠表面聲波濾波器的模擬與量測," 成功大學機械工程學系學位論文, pp. 1-88, 2003.
    [37]袁有朋 and 林大偉, "以表面聲波元件為基礎之可撓二氧化碳感測器," International Journal of Science and Engineering, vol. 5, no. 1, pp. 29-32, 2015.
    [38]R. Ro, R. Lee, Z.-X. Lin, C.-C. Sung, Y.-F. Chiang, and S. Wu, "Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure," Thin Solid Films, vol. 529, pp. 470-474, 2013.
    [39]A. Muller et al., "SAW devices manufactured on GaN/Si for frequencies beyond 5 GHz," IEEE Electron Device Letters, vol. 31, no. 12, pp. 1398-1400, 2010.
    [40]S. H. Chang, N. N. Rogacheva, and C. C. Chou, "Analysis of methods for determining electromechanical coupling coefficients of piezoelectric elements," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 42, no. 4, pp. 630-640, 1995.
    [41]M. R. Zakaria, U. Hashim, M. H. I. M. Amin, T. Adam, and M. W. Al-Mufti, "Simulation of 1Ghz center frequency saw using cst software for biosensor application," Middle-East Journal of Scientific Research, vol. 18, no. 9, pp. 1286-1291, 2013.
    [42]A. K. Namdeo and H. B. Nemade, "Extraction of Electrical Equivalent Circuit of One Port SAW Resonator Using FEM-based Simulation."
    [43]莊翔宇, "階梯式表面聲波元件的設計與模擬," 2017.
    [44]F. W. Grover, Inductance calculations: working formulas and tables. Courier Corporation, 2004.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE